精英家教网 > 高中数学 > 题目详情
17.已知sinα=-$\frac{1}{2}$,根据所给的范围求α.
(1)α∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)α∈[0,2π];
(3)α为第三象限角;
(4)α∈R.

分析 由条件利用正弦函数的图象特征,根据角的正弦值求出对应的角.

解答 解:根据sinα=-$\frac{1}{2}$,(1)由α∈[-$\frac{π}{2}$,$\frac{π}{2}$],可得α=-$\frac{π}{6}$;
(2)由α∈[0,2π],可得α=$\frac{7π}{6}$或α=$\frac{11π}{6}$;
(3)由α为第三象限角,可得α=$\frac{7π}{6}$+2kπ,k∈z;
(4)由α∈R,可得α=$\frac{7π}{6}$+2kπ,或α=$\frac{11π}{6}$+2kπ,k∈z.

点评 本题主要考查正弦函数的图象特征,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设P是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,-b),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(O为坐标原点),则λ22的最小值为(  )
A.$\frac{1}{4}$abB.$\frac{1}{4}$C.$\frac{1}{2}$abD.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等差数列{an}满足a1=1,an>0(n∈N*),其前n项和为Sn,若数列{$\sqrt{{S}_{n}}$}也为等差数列,则$\frac{{S}_{n+10}}{{{a}_{n}}^{2}}$的最大值是(  )
A.310B.212C.180D.121

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=a+\frac{4}{5}t}\\{y=-a-\frac{3}{5}t}\end{array}\right.$ (t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=2cosθ,若直线l平分圆C的周长,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式2|x|-1>a(x2-1)对满足-1≤a≤1的所有a都成立,则x的取值范围是-2<x<1-$\sqrt{3}$或$\sqrt{3}<x<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=3x2+1,g(x)=x3-9x,若f(x)+g(x)在区间[k,2]上的最大值为28,则实数k的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数a,b,c满足a<b<c,$\left\{\begin{array}{l}{a+b+c=6}\\{ab+bc+ca=9}\end{array}\right.$.
(1)(b-5)(c-5)的最小值是$\frac{15}{4}$;
(2)下列命题中:①0<a<1,②1<b<3,③3<c<4,其中真命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列2${\;}^{lo{g}_{a}b}$,4${\;}^{lo{g}_{a}b}$,8${\;}^{lo{g}_{a}b}$,…,(2n)${\;}^{lo{g}_{a}b}$,…(a,b为大于0的常数,且a≠1)
(1)求证:数列为等比数列;
(2)若数列又为等差数列,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.抛物线y2=16x的焦点坐标是(4,0).

查看答案和解析>>

同步练习册答案