精英家教网 > 高中数学 > 题目详情
13.已知P(a,b)为圆x2+y2=4上任意一点,则$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$最小时,a2的值为(  )
A.$\frac{4}{5}$B.2C.$\frac{4}{3}$D.3

分析 P(a,b)为圆x2+y2=4上任意一点,可得:a2+b2=4.设a=2cosθ,b=2sinθ.代入$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=$\frac{1}{4co{s}^{2}θ}$+$\frac{4}{4si{n}^{2}θ}$=$\frac{1}{4}$$(ta{n}^{2}θ+1+4+\frac{4}{ta{n}^{2}θ})$,利用基本不等式的性质即可得出.

解答 解:∵P(a,b)为圆x2+y2=4上任意一点,
∴a2+b2=4.
设a=2cosθ,b=2sinθ.
则$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=$\frac{1}{4co{s}^{2}θ}$+$\frac{4}{4si{n}^{2}θ}$=$\frac{si{n}^{2}θ+co{s}^{2}θ}{4co{s}^{2}θ}$+$\frac{4(si{n}^{2}θ+co{s}^{2}θ)}{4si{n}^{2}θ}$=$\frac{1}{4}$$(ta{n}^{2}θ+1+4+\frac{4}{ta{n}^{2}θ})$≥$\frac{1}{4}(2\sqrt{ta{n}^{2}θ•\frac{4}{ta{n}^{2}θ}}+5)$=$\frac{9}{4}$,当且仅当tan2θ=2时取等号,a2=4cos2θ=$\frac{4co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{4}{ta{n}^{2}θ+1}$=$\frac{4}{3}$.
故选:C.

点评 本题考查了基本不等式的性质、圆的标准方程、三角函数代换,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数y=-1+$\frac{1}{2}$cosx的最大值及取得最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P在曲线C:y=$\sqrt{3}$cosx+2015上移动,若曲线C在P处的切线的倾斜角为α,则α的取值范围是(  )
A.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)B.[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π)C.[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π]D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过抛物线上的点(-1,2)作抛物线y=x2+1的切线,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.火车紧急刹车的速度v(t)=10-t+$\frac{108}{t+2}$m/s,则刹车后行驶的距离约为344.1m(精确到0.1m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知α为锐角,cos(α+$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)求sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{OA}=(-1+m,2),\overrightarrow{OB}=(3,m)$,若$\overrightarrow{OA}$平行于$\overrightarrow{OB}$,则m的值为(  )
A.2或-3B.3或-2C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=cos\frac{x}{3}•(sin\frac{x}{3}+\sqrt{3}cos\frac{x}{3})$.
(1)将f(x)写成Asin(ωx+φ)+B($A>0,ω>0,φ∈({-\frac{π}{2},\frac{π}{2}})$)的形式,并写出其最小正周期,图象的对称轴方程,奇偶性(不要证明);
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow a=(1,2)$,且$\overrightarrow a∥\overrightarrow b$,则$\overrightarrow b$可能是(  )
A.(2,1)B.(-2,-1)C.(4,-2)D.(-1,-2)

查看答案和解析>>

同步练习册答案