精英家教网 > 高中数学 > 题目详情
1.已知平面向量$\overrightarrow a=(1,2)$,且$\overrightarrow a∥\overrightarrow b$,则$\overrightarrow b$可能是(  )
A.(2,1)B.(-2,-1)C.(4,-2)D.(-1,-2)

分析 利用向量共线定理的坐标运算性质即可得出.

解答 解:设$\overrightarrow{b}$=(x,y),∵$\overrightarrow a∥\overrightarrow b$,
∴2x-y=0,
经过验证只有D满足上式.
∴$\overrightarrow{b}$可能为(-1,-2).
故选:D.

点评 本题考查了向量共线定理的坐标运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知P(a,b)为圆x2+y2=4上任意一点,则$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$最小时,a2的值为(  )
A.$\frac{4}{5}$B.2C.$\frac{4}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow a=(sinx,1),\;\;\overrightarrow b=(4,-2)$,函数$f(x)=\overrightarrow a•\overrightarrow b$,x∈R.
(1)求函数f(x)的解析式;
(2)设$g(θ)=f(2θ-\frac{π}{4})$,当θ∈$[{\frac{π}{8},\frac{3π}{4}}]$时,g(θ)-k=0有解,求实数k的取值范围;
(3)设$h(x)=\frac{f(x)}{{|\overrightarrow a{|^2}}}$,求函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
根据上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=0.76,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,据此估计,该社区一户收入为5万元家庭年支出约为(  )
A.3.8万元B.3.9万元C.4.1万元D.4.2万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.①扇形的周长为8cm,面积为4cm2,则扇形的圆心角(正角)的弧度数是2.
②设a=0.32,b=2 0.3,c=log25,d=log20,3,则a,b,c,d的大小关系是d<a<b<c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(g(x))=sin2x,g(x)=tan({x+\frac{π}{4}})$,则$f(-\frac{1}{7})$=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$-\frac{24}{25}$D.$-\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足$z=\frac{2i}{1+i}$,则$z•\overline z$=(  )(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x=lnπ,y=log${\;}_{\frac{1}{2}}$π,z=e-2,则(  )
A.x<y<zB.y<x<zC.y<z<xD.z<y<x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数y=f(x)的图象过点$(4,\frac{1}{2})$,则该幂函数的定义域是(0,+∞).

查看答案和解析>>

同步练习册答案