精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2+cx(a≠0)定义在R上的奇函数,且x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)若对任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立,求s的最小值.

解:(1)∵f(x)=ax3+bx2+cx(a≠0)是定义R上的奇函数
∴b=0
∴f(x)=ax3+cx,∴f′(x)=3ax2+c
依题意有f′(-1)=0且f(-1)=1
,解得,a=,c=-
∴f(x)=x3+-x
(2)
x∈(-1,1)时f′(x)<0,
∴f(x)在x∈[-1,1]上是减函数,
即f(1)≤f(x)≤f(-1),
则|f(x)|≤1,?fmax(x)=1,fmin(x)=-1,
当x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤|f(x)max|+|f(x)min|≤1+1=2
∴|f(x1)-f(x2)|≤s中s的最小值为2,
∴s的最小值2.
分析:(1)欲求f(x)的解析式,只需找到关于a,b,c的三个等式,求出a,b,c的值,根据函数的奇偶性可得到一个含a,b,c的等式,根据x=-1时,取得极值1,可知函数在x=-1时,导数等于0,且x=-1时,函数值等于1,又可得到两个含a,b,c的等式,三个等式联立,解出a,b,c即可.
(2)利用导数得到函数为减函数f(1)≤f(x)≤f(-1)得到|f(x)|≤1,从而得出f(x)的最大最小值,从而求出当|f(x1)-f(x2)|≤s成立时s的最小值.
点评:本题主要考查了利用导数求闭区间上函数的最值,考查学生利用导数研究函数极值的能力,以及绝对值不等式的性质.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案