精英家教网 > 高中数学 > 题目详情
6.若数列{an}的通项公式是an=(-1)•(3n-2),求数列{an}的前n项和Sn

分析 由已知可得,数列{an}是以-1为首项,以-3为公差的等差数列,代入等差数列的前n项和公式求得答案.

解答 解:由an=(-1)•(3n-2),得a1=-1,
且an+1-an=(-1)•(3n+1)-(-1)•(3n-2)
=(-1)•(3n+1-3n+2)=-3.
∴数列{an}是以-1为首项,以-3为公差的等差数列,
则${S}_{n}=-n+\frac{n(n-1)(-3)}{2}=\frac{-3{n}^{2}+n}{2}$.

点评 本题考查等差关系的确定,考查了等差数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,上海迪士尼乐园将一三角形地块ABC的一角APQ开辟为游客体验活动区.已知∠A=120°,AB、AC的长度均大于200米.设AP=x,AQ=y,且AP,AQ总长度为200米.
(1)当x,y为何值时?游客体验活动区APQ的面积最大,并求最大面积;
(2)当x,y为何值时?线段|PQ|最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平行于x轴的直线分别交曲线y=e2x+1与y=$\sqrt{2x-1}$于A,B两点,则|AB|的最小值为(  )
A.$\frac{5+ln2}{4}$B.$\frac{5-ln2}{4}$C.$\frac{3+ln2}{4}$D.$\frac{3-ln2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=2sin(2x+$\frac{π}{4}$)在x∈[0,π]范围内的最值,并说出取得最值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知($\sqrt{x}$+$\frac{a}{{x}^{2}}$)n(其中a∈R)展开式中有且只有第六项二项式系数最大,且展开式中的常数是180,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,若公差d<0,则S1,S2,…,S12中最大的为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设p:?x0∈R,-x${\;}_{0}^{2}$+2x0-m>0,q:函数f(x)=$\frac{1}{3}$x3-2x2+4mx+1在R内使增函数,则¬p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|y=1n(1-x2)},B={y|y=1n(1-x2)},则CR(A∩B)=(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,-1]∪[0,+∞)C.(-1,0)D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x+$\frac{a}{{e}^{x}}$,g(x)=ln(x2+1).
(Ⅰ)若在x=0处y=f(x)和y=g(x)图象的切线平行,求a的值;
(Ⅱ)设函数h(x)=$\left\{\begin{array}{l}{f(x)-a,x≤a}\\{g(x)-a,x>a}\end{array}\right.$,讨论函数h(x)零点的个数.

查看答案和解析>>

同步练习册答案