分析 如果n是奇数,那么是中间两项的二次项系数最大,如果n是偶数,那么是最中间那项的二次项系数最大,由此可确定n的值,进而利用展开式,根据常数项,即可求出a的值.
解答 解:如果n是奇数,那么是中间两项的二次项系数相等且最大,如果n是偶数,那么中间项的二次项系数最大.
∵($\sqrt{x}$+$\frac{a}{{x}^{2}}$)n(其中a∈R)展开式中有且只有第六项二项式系数最大,
∴n=10,
∴($\sqrt{x}$+$\frac{a}{{x}^{2}}$)10其的通项为C10rar${x}^{\frac{10-5r}{2}}$,
令10-5r=0,
解得r=2,
∴C102a2=180,
解得a=±2.
点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com