3£®¶ÔÓÚ¶¨ÒåÔÚ[0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©£¬Èôº¯Êýy=f£¨x£©-£¨ax+b£©Âú×㣺¢ÙÔÚÇø¼ä[0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»¢Ú´æÔÚ³£Êýp£¬Ê¹ÆäÖµÓòΪ£¨0£¬p]£¬Ôò³Æº¯Êýg£¨x£©=ax+bΪf£¨x£©µÄ¡°½¥½üº¯Êý¡±£»
£¨I£©Ö¤Ã÷£ºº¯Êý g£¨x£©=x+1ÊǺ¯Êýf£¨x£©=$\frac{{x}^{2}+2x+3}{x+1}$£¬x¡Ê[0£¬+¡Þ£©µÄ½¥½üº¯Êý£¬²¢Çó´ËʱʵÊýpµÄÖµ£»
£¨¢ò£©Èôº¯Êýf£¨x£©=$\sqrt{{x}^{2}+1}$£¬x¡Ê[0£¬+¡Þ£©£¬g£¨x£©=ax£¬Ö¤Ã÷£ºµ±0£¼a£¼1ʱ£¬g£¨x£©²»ÊÇf£¨x£©µÄ½¥½üº¯Êý£®

·ÖÎö £¨1£©Í¨¹ýÁît£¨x£©=f£¨x£©-g£¨x£©£¬ÀûÓá°½¥½üº¯Êý¡±µÄ¶¨ÒåÖðÌõÑéÖ¤¼´¿É£»
£¨2£©Í¨¹ý¼Çt£¨x£©=f£¨x£©-g£¨x£©£¬½áºÏ¡°½¥½üº¯Êý¡±µÄ¶¨Òå¿ÉÖª$\frac{2x}{\sqrt{{x}^{2}+1}}$£¼a£¬ÎÊÌâת»¯ÎªÇóµ±x¡Ê[0£¬+¡Þ£©Ê±q£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$µÄ×î´óÖµÎÊÌ⣬½ø¶ø¼ÆËã¿ÉµÃaµÄ·¶Î§£¬´Ó¶øÖ¤Ã÷½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£ºÒÀÌâÒ⣬Áît£¨x£©=f£¨x£©-g£¨x£©£¬
Ôòt£¨x£©=$\frac{{x}^{2}+2x+3}{x+1}$-£¨x+1£©=$\frac{2}{x+1}$£¬
¡ßt¡ä£¨x£©=-$\frac{2}{£¨{x+1£©}^{2}}$£¼0£¬
¡àt£¨x£©ÔÚÇø¼ä[0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÇÒ$\underset{lim}{x¡ú¡Þ}$t£¨x£©=0£¬
¡à0£¼t£¨x£©¡Üt£¨0£©=2£¬
ÓÚÊǺ¯Êýg£¨x£©=x+1ÊǺ¯Êýf£¨x£©=$\frac{{x}^{2}+2x+3}{x+1}$£¬
x¡Ê[0£¬+¡Þ£©µÄ½¥½üº¯Êý£¬´ËʱʵÊýp=2£»
£¨2£©Ö¤Ã÷£º¼Çt£¨x£©=f£¨x£©-g£¨x£©=$\sqrt{{x}^{2}+1}$-ax£¬
Ôòt¡ä£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$-a£¬
¡ßº¯Êýf£¨x£©=$\sqrt{{x}^{2}+1}$£¬x¡Ê[0£¬+¡Þ£©µÄ½¥½üº¯ÊýÊÇg£¨x£©=ax£¬
¡àµ±x¡Ê[0£¬+¡Þ£©Ê±t¡ä£¨x£©£¼0£¬¼´$\frac{2x}{\sqrt{{x}^{2}+1}}$£¼a£¬
ÁÊýq£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$£¬ÆäÖÐx¡Ê[0£¬+¡Þ£©£¬
µ±x=0ʱ£¬q£¨x£©=0£»
µ±x¡Ù0ʱ£¬q£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$=$\frac{2}{\sqrt{\frac{{x}^{2}+1}{{x}^{2}}}}$=$\frac{2}{\sqrt{1+\frac{1}{{x}^{2}}}}$ÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
ÇÒ$\underset{lim}{x¡ú¡Þ}$q£¨x£©=2£¬
¡àa¡Ý2£®
µ±0£¼a£¼1ʱ£¬g£¨x£©²»ÊÇf£¨x£©µÄ½¥½üº¯Êý£®

µãÆÀ ±¾Ì⿼²éж¨Ò庯ÊýµÄÀí½âÓëÓ¦Óã¬Éæ¼°µ¼ÊýµÄ¼ÆË㣬º¯Êýµ¥µ÷ÐÔ¼°¼«ÏÞ֪ʶ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Éè²»µÈʽ×é$\left\{\begin{array}{l}{x-y+4¡Ý0}\\{x+y¡Ý0}\\{x¡Ü1}\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪ¦¸1£¬²»µÈʽ×é$\left\{\begin{array}{l}{-2¡Üx¡Ü1}\\{-1¡Üy¡Ü5}\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪ¦¸2£¬ÔÚÇøÓò¦¸2ÄÚËæ»úȡһµã£¬Ôò¸ÃµãÊÇÈ¡×ÔÓÚÇøÓò¦¸1µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªSnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=1£¬a2=3£¬an+2=3an£¬ÔòS2016=£¨¡¡¡¡£©
A£®2¡Á£¨31008-1£©B£®2¡Á31008C£®$\frac{{{3^{2016}}-1}}{2}$D£®$\frac{{{3^{2016}}+1}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¼¯ºÏA={x|log2£¨x-1£©£¼2}£¬B={x|a£¼x£¼6}£¬ÇÒA¡ÉB={x|2£¼x£¼b}£¬Ôòa+b=£¨¡¡¡¡£©
A£®7B£®6C£®5D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ë«ÇúÏß$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1µÄÀëÐÄÂÊΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÖÀÁ½¿Å¾ùÔȵÄ÷»×Ó£¬µÃµ½ÆäÏòÉϵĵãÊý·Ö±ðΪmºÍn£¬Ôò¸´Êý£¨m+ni£©£¨n-mi£©£¨iΪÐéÊýµ¥Î»£©ÎªÊµÊýµÄ¸ÅÂÊΪ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèµãE£¬F·Ö±ðÊÇÀⳤΪ2µÄÕý·½ÌåABCD-A1B1C1D1µÄÀâAB£¬AA1µÄÖе㣮Èçͼ£¬ÒÔCÎª×ø±êÔ­µã£¬ÉäÏßCD¡¢CB¡¢CC1·Ö±ðÊÇxÖá¡¢yÖá¡¢zÖáµÄÕý°ëÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ
£¨1£©ÇóÏòÁ¿$\overrightarrow{{D_1}E}$Óë$\overrightarrow{{C_1}F}$µÄÊýÁ¿»ý£»
£¨2£©ÈôµãM£¬N·Ö±ðÊÇÏß¶ÎD1EÓëÏß¶ÎC1FÉϵĵ㣬ÎÊÊÇ·ñ´æÔÚÖ±ÏßMN£¬MN¡ÍÆ½ÃæABCD£¿Èô´æÔÚ£¬ÇóµãM£¬NµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑ֪ʵÊýa£¬b¡ÊRÇÒa2-ab+b2=3£¬Ôò$\frac{£¨1+ab£©^{2}}{{a}^{2}+{b}^{2}+1}$µÄ×î´óֵΪ$\frac{16}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÍÖÔ²$\left\{\begin{array}{l}{x=4+2cos¦È}\\{y=1+5sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄ½¹¾àÊÇ£¨¡¡¡¡£©
A£®$\sqrt{21}$B£®2$\sqrt{21}$C£®$\sqrt{29}$D£®2$\sqrt{29}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸