精英家教网 > 高中数学 > 题目详情
9.在直角坐标系xOy中,曲线C1的方程是x2+2y2=5,C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3t}\\ y=-\sqrt{t}\end{array}\right.$(t为参数),则C1与C2交点的直角坐标是($\sqrt{3}$,-1).

分析 把C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3t}\\ y=-\sqrt{t}\end{array}\right.$(t为参数),代入曲线C1的方程x2+2y2=5,解得t即可得出.

解答 解:把C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3t}\\ y=-\sqrt{t}\end{array}\right.$(t为参数),代入曲线C1的方程x2+2y2=5,
化为:5t=5,解得t=1.
则C1与C2交点的直角坐标是($\sqrt{3}$,-1).
故答案为:($\sqrt{3}$,-1).

点评 本题考查了直线的参数方程、直线与椭圆相交问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}满足:a4=7,a10=19,其前n项和为Sn
(1)求数列{an}的通项公式an及Sn
(2)若等比数列{bn}的前n项和为Tn,且b1=2,b4=S4,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.判断函数$y={x^2}lg(x+\sqrt{{x^2}+1})$的奇偶性是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.圆x2+y2=8内有一点P(-1,2),AB为过点P的弦,
(1)若|AB|=2$\sqrt{7}$,求出直线AB的方程;
(2)设过P点的弦的中点为M,求点M的坐标所满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=cos2x+sinx的最小值是(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{-1+\sqrt{2}}{2}$C.-1D.$\frac{1-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若tanα=$\frac{1}{2},tanβ=\frac{1}{3},α,β∈(0,\frac{π}{4})$,则α+β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}满足:an+an+1=5(n∈N*),若a7=4,则a2014=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求三个数175,100,75的最大公约数.
(2)将1015(6)转化成十进制的数,再将十进制转化为八进制.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知函数y=3cosx,x∈(-$\frac{π}{3}$,$\frac{4π}{3}$),求单调区间、最值及取得最值条件.
(2)已知-$\frac{\sqrt{3}}{2}$≤sinθ<$\frac{1}{2}$,求θ的范围.

查看答案和解析>>

同步练习册答案