分析 由题意和等比数列的性质可得m和n均为正整数,且m+n=6,可得$\frac{1}{m}$+$\frac{4}{n}$=$\frac{1}{6}$($\frac{1}{m}$+$\frac{4}{n}$)(m+n)=$\frac{1}{6}$(5+$\frac{n}{m}$+$\frac{4m}{n}$),由基本不等式可得.
解答 解:∵等比数列{an}满足am•an=a23,
∴m和n均为正整数,且m+n=6,
∴$\frac{1}{m}$+$\frac{4}{n}$=$\frac{1}{6}$($\frac{1}{m}$+$\frac{4}{n}$)(m+n)
=$\frac{1}{6}$(5+$\frac{n}{m}$+$\frac{4m}{n}$)
≥$\frac{1}{6}$(5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$)=$\frac{3}{2}$,
当且仅当$\frac{n}{m}$=$\frac{4m}{n}$即m=2且n=4时取等号,
∴$\frac{1}{m}$+$\frac{4}{n}$的最小值为:$\frac{3}{2}$
故答案为:$\frac{3}{2}$
点评 本题考查等比数列的通项公式和性质,涉及基本不等式求最值,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞)∪(-∞,-1) | B. | (2,+∞)∪(-∞,1) | C. | (-∞,1)∪(3,+∞) | D. | (2,+∞)∪(-∞,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com