精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=a+|$\frac{{x}^{2}1}{x}$|-2${\;}^{|lo{g}_{2}x|}$,若x$∈[\frac{1}{2},4]$时,f(x)≤0恒成立,则a的取值范围为$a≤\frac{1}{4}$.

分析 将恒等式变形,得a≤f(x)在x$∈[\frac{1}{2},4]$时恒成立,其中f(x)=$-|x-\frac{1}{x}|+{2}^{|lo{g}_{2}x|}$,画出其图象即可.

解答 解:根据题意,当x$∈[\frac{1}{2},4]$时,f(x)≤0恒成立,
即不等式a≤$-|x-\frac{1}{x}|+{2}^{|lo{g}_{2}x|}$在x$∈[\frac{1}{2},4]$时恒成立,
而函数f(x)=$-|x-\frac{1}{x}|+{2}^{|lo{g}_{2}x|}$的图象如右图,
所以f(x)在x$∈[\frac{1}{2},4]$上的最小值为$\frac{1}{4}$,
故答案为:$a≤\frac{1}{4}$.

点评 本题考查函数的最值问题,对不等式变形、构造新函数并研究新函数的值域是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.A,B是半径为2的圆O上的两点,M是弦AB上的动点,若△AOB为直角三角形,则$\overrightarrow{OM}$•$\overrightarrow{AM}$的最小值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设数列{an}的前n项和是Sn,数列{Sn}的前n项乘积为Tn,且Sn+Tn=1,则数列{$\frac{1}{{a}_{n}}$}中最接近2015的项是(  )
A.第43项B.第44项C.第45项D.第46项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=2px(p>0)焦点为F,抛物线上横坐标为$\frac{1}{2}$的点到抛物线顶点的距离与其到准线的距离相等.
(Ⅰ)求抛物线的方程;
(Ⅱ)设过点P(6,0)的直线l与抛物线交于A,B两点,若以AB为直径的圆过点F,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等比数列{an}满足am•an=a23,则$\frac{1}{m}$+$\frac{4}{n}$的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给定下列三个命题:
p1:函数y=ax-a-x(a>0,且a≠1)在R上为增函数;
p2:?a,b∈R,a2-ab+b2<0;
p3:cosα=cosβ成立的一个充分不必要条件是α=2kπ+β(k∈Z)
则下列命题中真命题为(  )
A.p1∨p2B.p2∧p3C.¬p2∧p3D.p1∨¬p3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在△ABC中,AC=2,BC=3,cosA=-$\frac{4}{5}$.
(Ⅰ)求sinB的值;
(Ⅱ)求AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,点A,B是两曲线的交点,O为坐标原点,若($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AF}$=0,则双曲线的实轴长为(  )
A.$\sqrt{2}$+2B.$\sqrt{2}$-1C.2$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中,a1=1,an+1=an+n,利用如图所示的程序框图计算该数列的第10项,则判断框中应填的语句是(  )
A.n<9?B.n>10?C.n≤9?D.n≤10?

查看答案和解析>>

同步练习册答案