精英家教网 > 高中数学 > 题目详情
11.设$\overrightarrow{p}$=(2,7),$\overrightarrow{q}$=(x,-3),则$\overrightarrow{p}$与$\overrightarrow{q}$的夹角为钝角时x的取值范围为x<$\frac{21}{2}$且x≠-$\frac{6}{7}$.

分析 利用数量积公式知向量的夹角为钝角时数量积小于0且不是方向相反的向量,据数量积小于0求出x的范围,据共线向量的充要条件求出方向相反时x的范围,第一个范围去掉第二个范围即为所求

解答 解:∵$\overrightarrow{p}$与$\overrightarrow{q}$的夹角为钝角,
∴$\overrightarrow{p}$•$\overrightarrow{q}$<0即2x-21<0
解得x<$\frac{21}{2}$
当$\overrightarrow{p}$与$\overrightarrow{q}$方向相反时,设$\overrightarrow{p}$=λ$\overrightarrow{q}$且λ<0
∴(2,7)=(λx,-3λ)
∴$\left\{\begin{array}{l}{2=λx}\\{7=-3λ}\end{array}\right.$
∴x=-$\frac{6}{7}$
∴x的范围为x<$\frac{21}{2}$且x≠-$\frac{6}{7}$;
故答案为:x<$\frac{21}{2}$且x≠-$\frac{6}{7}$;

点评 本题考查向量的数量积表示向量的夹角及向量共线的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图,O是边长为2的等边△ABC的中心,动点E在边AC上运动,F在边AB及BC上运动,则$\overrightarrow{OB}$•$\overrightarrow{EF}$的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等比数列{an}满足am•an=a23,则$\frac{1}{m}$+$\frac{4}{n}$的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在△ABC中,AC=2,BC=3,cosA=-$\frac{4}{5}$.
(Ⅰ)求sinB的值;
(Ⅱ)求AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线Γ:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线Γ相交于M、N两点,且|MN|=4.
(Ⅰ)求抛物线Γ的方程;
(Ⅱ)若点P是抛物线Γ上的动点,点B、C在y轴上,圆(x-1)2+y2=1内切于△PBC,求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,点A,B是两曲线的交点,O为坐标原点,若($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AF}$=0,则双曲线的实轴长为(  )
A.$\sqrt{2}$+2B.$\sqrt{2}$-1C.2$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.复数z满足(2+i)(z-i)=i,则|z|=$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.从区间(0,10)内任取一个实数x,执行如图所示的程序框图后,输出的结果大于55的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中既是奇函数又是增函数的是(  )
A.y=x3+xB.y=logaxC.y=3xD.y=-$\frac{1}{x}$

查看答案和解析>>

同步练习册答案