精英家教网 > 高中数学 > 题目详情
20.从区间(0,10)内任取一个实数x,执行如图所示的程序框图后,输出的结果大于55的概率为$\frac{2}{5}$.

分析 由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于55得到输入值的范围,利用几何概型的概率公式求出输出的x大于55的概率.

解答 解:设实数x∈[0,10],
经过第一次循环得到x=2x+1,n=2
经过第二循环得到x=2(2x+1)+1,n=3
经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x
输出的值为8x+7
令8x+7≥55,得x≥6
由几何概型得到输出的x大于55的概率为=$\frac{10-6}{10-0}$=$\frac{2}{5}$.
故答案为:$\frac{2}{5}$.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型⇒③解模

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,“sinA>cosB”是“△ABC为锐角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设$\overrightarrow{p}$=(2,7),$\overrightarrow{q}$=(x,-3),则$\overrightarrow{p}$与$\overrightarrow{q}$的夹角为钝角时x的取值范围为x<$\frac{21}{2}$且x≠-$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直三棱柱ABC-A1B1C1中,D,E,F分别是BB1、AA1、AC的中点,AC=BC,AB=$\sqrt{2}$AC.CD⊥C1D.
(Ⅰ)求证:CD∥平面BEF;
(Ⅱ)求证:平面BEF⊥平面A1C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x>1,求函数y=$\frac{x-1}{{x}^{2}-5x+8}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”,设函数f(x)=lnx与g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“密切函数”,则实数m的取值范围是(  )
A.[e-1,2]B.[e-2,2]C.[$\frac{1}{e}$-e,1+e]D.[1-e,1+e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设Sn是数量{an}的前n项和,如果Sn=3an-2,那么数列{an}的通项公式为${a}_{n}=(\frac{3}{2})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC中角A,B,C的对边分别是a,b,c,满足cosB=$\frac{4}{5}$,a=10,△ABC的面积为42,则$\frac{a}{sinA}$的值等于(  )
A.5$\sqrt{3}$B.10$\sqrt{3}$C.5$\sqrt{2}$D.10$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:i+2i2+3i3+…+2016i2016

查看答案和解析>>

同步练习册答案