精英家教网 > 高中数学 > 题目详情
14.计算:$\underset{lim}{n→∞}$$\frac{{n}^{2}+n+1}{2{n}^{2}+3n+2}$=$\frac{1}{2}$.

分析 直接利用数列的极限的运算法则化简求解即可.

解答 解:$\underset{lim}{n→∞}$$\frac{{n}^{2}+n+1}{2{n}^{2}+3n+2}$=$\underset{lim}{n→∞}\frac{1+\frac{1}{n}+\frac{1}{{n}^{2}}}{2+\frac{3}{n}+\frac{2}{{n}^{2}}}$=$\frac{1+0+0}{2+0+0}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查数列的极限的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.关于函数y=tan(2x+$\frac{2π}{3}$),下列说法正确的是(  )
A.是奇函数B.在区间$(\frac{π}{12},\frac{7π}{12})$上单调递增
C.$(-\frac{π}{12},0)$为其图象的一个对称中心D.最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,M为线段AB的中点,延长OM交椭圆C于P.
(1)若直线l与直线OM的斜率之积为-$\frac{1}{4}$,且椭圆的长轴为4,求椭圆C的方程;
(2)若四边形OAPB为平行四边形,求四边形OAPB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知方程x2+y2-2x+2y+F=0表示半径为2的圆,则实数F=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)是偶函数,且在[0,+∞)上函数$f(x)=\left\{\begin{array}{l}{({\frac{3}{4}})^x},x<1\\ 3-\frac{9}{4}x,x≥1\end{array}\right.$,则$f({-\frac{3}{2}})$与$f({{a^2}+2a+\frac{5}{2}})$的大小关系是(  )
A.$f({-\frac{3}{2}})>f({{a^2}+2a+\frac{5}{2}})$B.$f({-\frac{3}{2}})<f({{a^2}+2a+\frac{5}{2}})$C.$f({-\frac{3}{2}})≥f({{a^2}+2a+\frac{5}{2}})$D.$f({-\frac{3}{2}})≤f({{a^2}+2a+\frac{5}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等边△ABC的边长为2,点E、F分别在边CA、BA上且满足$\overrightarrow{BE}$•$\overrightarrow{BC}$=2$\overrightarrow{BF}$•$\overrightarrow{BC}$=3,则$\overrightarrow{BE}$•$\overrightarrow{CF}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是单元素集合,若存在a<0,b<0使点P∈{(x,y)|(x-a)2+(y-b)2≤1},则点P所在的区域的面积为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-m|+|x-n|.
(1)若m=2,n=-5,解不等式f(x)>9;
(2)若m=a,n=-$\frac{1}{a}$,其中a≠0,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察数表:
1234…第一行
2345…第二行
3456…第三行
4567…第四行
第一列第二列第三列第四列
根据数表中所反映的规律,第n+1行与第m列的交叉点上的数应该是m+n.

查看答案和解析>>

同步练习册答案