精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=|x-m|+|x-n|.
(1)若m=2,n=-5,解不等式f(x)>9;
(2)若m=a,n=-$\frac{1}{a}$,其中a≠0,求函数f(x)的最小值.

分析 (1)化简表达式|x-2|+|x-5|>9.通过当x<-5时,当-5≤x≤2时,当x>2时,转化不等式为代数不等式求解即可.
(2)求出|x-a|+|x+$\frac{1}{a}$|的最小值,由a>0,由a<0,求出最值,然后推出函数f(x)的最小值即可.

解答 解:(1)由题意可知|x-2|+|x-5|>9.当x<-5时,原式化为:2-x-x-5>9,解得x<-6,故x<-6;
当-5≤x≤2时,原式化为:2-x+x+5>9,不等式无解;
当x>2时,原式化为:x-2+x+5>9,解得x>3,故x>3;
综上不等式的解集为:{x|x<-6或x>3}.
(2)因为|x-a|+|x+$\frac{1}{a}$|=|a-x|+|x+$\frac{1}{a}$|≥|a+$\frac{1}{a}$|.由a>0,
可知a+$\frac{1}{a}$$≥2\sqrt{a•\frac{1}{a}}$=2,由a<0,可知a+$\frac{1}{a}$=-(-a-$\frac{1}{a}$)≤-2,
∴$|a+\frac{1}{a}|$≥2,所以函数f(x)的最小值为2.

点评 本题考查函数的最值的求法,绝对值不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知直线l过点A(0,2)和B(-$\sqrt{3}$,3m2+12m+13)(m∈R),则直线l的倾斜角的取值范围为[0°,30°]∪(90°,180°).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:$\underset{lim}{n→∞}$$\frac{{n}^{2}+n+1}{2{n}^{2}+3n+2}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直线l:x+$\sqrt{3}$y-c=0(c>0)为公海与领海的分界线,一艘巡逻艇在O处发现了北偏东60°海面上A处有一艘走私船,走私船正向停泊在公海上接应的走私海轮B航行,以使上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若O与公海的最近距离20海里,要保证在领海内捕获走私船(即不能截获走私船的区域与公海不想交).则O,A之间的最远距离是多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,则b=$\frac{21}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=log85,b=log43,c=($\frac{4}{5}$)2,则a,b,c的大小关系是(  )
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax,g(x)=x+a.
(Ⅰ)若f(x)在x=1处取得极值,求实数a的值;
(Ⅱ)若对于任意的x1∈[0,1],存在x2∈[0,1],使得f(x1)=g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有下列一列数:1,8,27,64,      ,216,343,…,按照此规律,横线中的数应为(  )
A.75B.100C.125D.150

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在坐标平面xOy内,O为原点,点$P(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,射线OP逆时针旋转$\frac{π}{2}$,则旋转后的点P坐标为(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

同步练习册答案