11£®Èçͼ£¬ÒÑÖªÖ±Ïßl£ºx+$\sqrt{3}$y-c=0£¨c£¾0£©Îª¹«º£ÓëÁ캣µÄ·Ö½çÏߣ¬Ò»ËÒѲÂßͧÔÚO´¦·¢ÏÖÁ˱±Æ«¶«60¡ãº£ÃæÉÏA´¦ÓÐÒ»ËÒ×ß˽´¬£¬×ß˽´¬ÕýÏòÍ£²´ÔÚ¹«º£ÉϽÓÓ¦µÄ×ß˽º£ÂÖBº½ÐУ¬ÒÔʹÉϺ£ÂÖºóÌÓ´Ü£®ÒÑ֪ѲÂßͧµÄº½ËÙÊÇ×ß˽´¬º½ËÙµÄ2±¶£¬ÇÒÁ½Õß¶¼ÊÇÑØÖ±Ïߺ½ÐУ¬µ«×ß˽´¬¿ÉÄÜÏòÈÎÒ»·½ÏòÌÓ´Ü£®
£¨1£©Èç¹û×ß˽´¬ºÍѲÂß´¬Ïà¾à6º£ÀÇó×ß˽´¬Äܱ»½Ø»ñµÄµãµÄ¹ì¼££»
£¨2£©ÈôOÓ빫º£µÄ×î½ü¾àÀë20º£ÀҪ±£Ö¤ÔÚÁ캣ÄÚ²¶»ñ×ß˽´¬£¨¼´²»Äܽػñ×ß˽´¬µÄÇøÓòÓ빫º£²»Ïë½»£©£®ÔòO£¬AÖ®¼äµÄ×îÔ¶¾àÀëÊǶàÉÙº£À

·ÖÎö £¨1£©Éè½Ø»ñµãΪP£¨x£¬y£©£¬¸ù¾Ý|OP|=2|AP|Áз½³Ì»¯¼ò¼´¿É£»
£¨2£©Éè|OA|=t£¬Çó³ö½Ø»ñµã¹ì¼£·½³Ì£¬¸ù¾ÝÖ±ÏßÓëÔ²²»ÏཻÁв»µÈʽµÃ³ötµÄ·¶Î§¼´¿ÉµÃ³ö|OA|µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖªµãA£¨3$\sqrt{3}$£¬3£©£¬Éè×ß˽´¬Äܱ»½Ø»ñµÄµãΪP£¨x£¬y£©£¬
Ôò|OP|=2|AP|£¬
¼´$\sqrt{{x}^{2}+{y}^{2}}$=2$\sqrt{£¨x-3\sqrt{3}£©^{2}+£¨y-3£©^{2}}$£¬ÕûÀíµÃ£º£¨x-4$\sqrt{3}$£©2+£¨y-4£©2=16£®
¡à×ß˽´¬Äܱ»½Ø»ñµÄµãµÄ¹ì¼£ÊÇÒÔ£¨4$\sqrt{3}$£¬4£©ÎªÔ²ÐÄ£¬ÒÔ4Ϊ°ë¾¶µÄÔ²£®
£¨2£©ÓÉÌâÒâµÃ$\frac{c}{2}$=20£¬¼´c=40£®¡àÖ±ÏßlµÄ·½³ÌΪx+$\sqrt{3}$y-40=0£®
Éè|OA|=t£¬ÔòA£¨$\frac{\sqrt{3}}{2}$t£¬$\frac{1}{2}$t£©£¨t£¾0£©£¬
Éè×ß˽´¬Äܱ»½Ø»ñµÄµãΪP£¨x£¬y£©£¬Ôò|OP|=2|AP|£¬
¡à$\sqrt{{x}^{2}+{y}^{2}}$=2$\sqrt{£¨x-\frac{\sqrt{3}}{2}t£©^{2}+£¨y-\frac{1}{2}t£©^{2}}$£¬
ÕûÀíµÃ£º£¨x-$\frac{2\sqrt{3}}{3}$t£©2+£¨y-$\frac{2}{3}$t£©2=$\frac{4}{9}{t}^{2}$£¬
¡à×ß˽´¬Äܱ»½Ø»ñµÄµãµÄ¹ì¼£ÊÇÒÔC£¨$\frac{2\sqrt{3}}{3}$t£¬$\frac{2}{3}t$£©ÎªÔ²ÐÄ£¬ÒÔ$\frac{2}{3}t$Ϊ°ë¾¶µÄÔ²£®
Èô±£Ö¤ÔÚÁ캣ÄÚ²¶»ñ×ß˽´¬£¬ÔòÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd¡Ý$\frac{2}{3}t$£®
¡à$\frac{|\frac{2\sqrt{3}}{3}t+\frac{2\sqrt{3}}{3}t-40|}{2}$¡Ý$\frac{2}{3}$t£¬
½âµÃ£ºt¡Ü$\frac{30}{\sqrt{3}+1}$=15£¨$\sqrt{3}$-1£©£¬
¡àO£¬AÖ®¼äµÄ×îÔ¶¾àÀëÊÇ15£¨$\sqrt{3}$-1£©º£À

µãÆÀ ±¾Ì⿼²éÁ˹켣·½³ÌµÄÇó½â£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ð¡ÍõͬѧÓÐÈýÖ§¿îʽÏàͬ¡¢ÑÕÉ«²»Í¬µÄÔ²Öé±Ê£¬Ã¿Ö§Ô²Öé±Ê¶¼ÓÐÒ»¸öÓë֮ͬÑÕÉ«µÄ±Êñ£¬Æ½Ê±Ð¡Íõ¶¼½«±ÊºÍ±ÊñÌ×ÔÚÒ»Æð£¬µ«Å¼¶û»á½«±ÊºÍ±Êñ´îÅä³É²»Í¬É«£®½«±ÊºÍ±ÊÃ±Ëæ»úÌ×ÔÚÒ»Æð£¬ÇëÎÊСÍõ½«Á½Ö§±ÊºÍ±ÊñµÄÑÕÉ«»ì´îµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{5}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª·½³Ìx2+y2-2x+2y+F=0±íʾ°ë¾¶Îª2µÄÔ²£¬ÔòʵÊýF=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªµÈ±ß¡÷ABCµÄ±ß³¤Îª2£¬µãE¡¢F·Ö±ðÔÚ±ßCA¡¢BAÉÏÇÒÂú×ã$\overrightarrow{BE}$•$\overrightarrow{BC}$=2$\overrightarrow{BF}$•$\overrightarrow{BC}$=3£¬Ôò$\overrightarrow{BE}$•$\overrightarrow{CF}$=-$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®É輯ºÏA={£¨x£¬y£©|y=x2+2bx+1}£¬B={£¨x£¬y£©|y=2a£¨x+b£©}£¬ÇÒA¡ÉBÊǵ¥ÔªËؼ¯ºÏ£¬Èô´æÔÚa£¼0£¬b£¼0ʹµãP¡Ê{£¨x£¬y£©|£¨x-a£©2+£¨y-b£©2¡Ü1}£¬ÔòµãPËùÔÚµÄÇøÓòµÄÃæ»ýΪ2¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®£¨1£©ÅжϺ¯Êýf£¨x£©=x3-x-1ÔÚÇø¼ä[-1£¬2]ÉÏÊÇ·ñ´æÔÚÁãµã£»
£¨2£©Çóº¯Êýy=x+$\frac{2}{x}$-3µÄÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=|x-m|+|x-n|£®
£¨1£©Èôm=2£¬n=-5£¬½â²»µÈʽf£¨x£©£¾9£»
£¨2£©Èôm=a£¬n=-$\frac{1}{a}$£¬ÆäÖÐa¡Ù0£¬Çóº¯Êýf£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÓÐËĸöÃüÌâ
¢ÙÈô$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$£¬Ôò$\overrightarrow pÓë\overrightarrow a¡¢\overrightarrow b$¹²Ãæ
¢ÚÈô$\overrightarrow pÓë\overrightarrow a¡¢\overrightarrow b$¹²Ã棬Ôò$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$
¢ÛÈô$\overrightarrow{MN}=x\overrightarrow{MA}+Y\overrightarrow{MB}$£¬ÔòM¡¢N¡¢A¡¢BËÄµã¹²Ãæ
¢ÜÈôM¡¢N¡¢A¡¢BËÄµã¹²Ãæ£¬Ôò$\overrightarrow{MN}=x\overrightarrow{MA}+Y\overrightarrow{MB}$
ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖʵÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®2+¦ÐB£®2+4¦ÐC£®6+¦ÐD£®6+4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸