精英家教网 > 高中数学 > 题目详情
1.小王同学有三支款式相同、颜色不同的圆珠笔,每支圆珠笔都有一个与之同颜色的笔帽,平时小王都将笔和笔帽套在一起,但偶尔会将笔和笔帽搭配成不同色.将笔和笔帽随机套在一起,请问小王将两支笔和笔帽的颜色混搭的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

分析 设三支款式相同、颜色不同的圆珠笔分别为A,B,C,与之相同颜色的笔帽分别为a,b,c,利用列举法求出将笔和笔帽随机套在一起,基本事件有6个,小王将两支笔和笔帽的颜色混搭包含的基本事件有3个,由此能求出小王将两支笔和笔帽的颜色混搭的概率.

解答 解:设三支款式相同、颜色不同的圆珠笔分别为A,B,C,与之相同颜色的笔帽分别为a,b,c,
将笔和笔帽随机套在一起,基本事件有:
(Aa,Bb,Cc),(Aa,Bc,cB),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Bb,Ca),(Ac,Ba,Cb),共有6个基本事件,
小王将两支笔和笔帽的颜色混搭包含的基本事件有:
(Aa,Bc,cB),(Ab,Ba,Cc),(Ac,Bb,Ca),共有3个基本事件,
∴小王将两支笔和笔帽的颜色混搭的概率是p=$\frac{3}{6}=\frac{1}{2}$.
故选:C.

点评 本题考查概率的求法,涉及到古典概型、列举法等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查数形结合思想、集合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)的定义域是(0,$\frac{π}{2}$),f′(x)是它的导函数,且f(x)+tanx•f′(x)>0在定义域内恒成立,则(  )
A.f($\frac{π}{6}$)>$\sqrt{2}$f($\frac{π}{4}$)B.$\sqrt{2}$sin1•f(1)>f($\frac{π}{4}$)C.f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$)D.$\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[$\frac{π}{4}$,$\frac{π}{3}$],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,AP=AB=AC=a,AD=$\sqrt{2}$a,PA⊥底面ABCD.
(1)求证:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一点E,使得四棱锥E-ABCD的体积为$\frac{{\sqrt{2}{a^3}}}{6}$?若存在,求出λ=$\frac{CE}{CP}$的值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如表:
人数 x
y
ABC
A144010
Ba36b
C28834
若抽取学生n人,成绩分为A(优秀),B(良好),C(及格)三个等次,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+10=64(人),数学成绩为B等级且地理成绩为C等级的有8人.已知x与y均为A等级的概率是0.07.
(Ⅰ)设在该样本中,数学成绩的优秀率是30%,求a,b的值;
(Ⅱ)已知a≥7,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体的体积是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l过点A(0,2)和B(-$\sqrt{3}$,3m2+12m+13)(m∈R),则直线l的倾斜角的取值范围为[0°,30°]∪(90°,180°).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数$f(x)=x(1-\frac{2}{{{e^x}+1}})$则函数f(x)的图象关于(  )
A.原点轴对称B.x轴对称C.y轴对称D.y=x对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直线l:x+$\sqrt{3}$y-c=0(c>0)为公海与领海的分界线,一艘巡逻艇在O处发现了北偏东60°海面上A处有一艘走私船,走私船正向停泊在公海上接应的走私海轮B航行,以使上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若O与公海的最近距离20海里,要保证在领海内捕获走私船(即不能截获走私船的区域与公海不想交).则O,A之间的最远距离是多少海里?

查看答案和解析>>

同步练习册答案