精英家教网 > 高中数学 > 题目详情
18.已知数列{an}是各项为正数的等比数列,且a2=9,a4=81.
(1)求数列{an}的通项公式an
(2)若bn=log3an,求证:数列{bn}是等差数列.

分析 (1)利用等比数列的通项公式即可得出.
(2)由(1)知${a_n}={3^n}$,bn=n,只要证明bn+1-bn=(常数)即可得出.

解答 (1)解:设数列{an}的公比为q,∵a2=9,a4=81.
则${q^2}=\frac{a_4}{a_2}=\frac{81}{9}=9$,
又∵an>0,∴q>0,∴q=3,
故通项公式${a_n}={a_2}{q^{n-2}}=9×{3^{n-2}}={3^n},\;\;n∈{N^*}$.
(2)证明:由(1)知${a_n}={3^n}$,∴${b_n}={log_3}{a_n}={log_3}{3^n}=n$,
∴bn+1-bn=(n+1)-n=1(常数),n∈N*
故数列{bn}是一个公差等于1的等差数列.

点评 本题考查了等差数列与等比数列的通项公式及其定义、对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设0<α<π,且sin$\frac{α}{2}$=$\frac{\sqrt{3}}{3}$,则sinα=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,求函数f(x)=x2eax的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,A,B是圆O上两点,延长AB至点C,满足AB=2BC=2,过C作直线CD与圆O相切于点D,∠ADB的平分线交AB于点E.
(1)证明:CD=CE;
(2)求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集为[-2,2],求实数m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{2^y}$+|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(2x+1)=4x2+4x-1,求f(x)的表达式及定义域和值域,并画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.周长为20的矩形绕其一边所在直线旋转形成一个封闭几何体,则该几何体的侧面积的最大值是(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(m,2m-1),若向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow a$=(-2,1),$\overrightarrow b$=(k,-3),$\overrightarrow c$=(1,2),若($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow c$,则|$\overrightarrow b$|=(  )
A.$3\sqrt{5}$B.$3\sqrt{2}$C.$2\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案