精英家教网 > 高中数学 > 题目详情
3.已知f(2x+1)=4x2+4x-1,求f(x)的表达式及定义域和值域,并画出f(x)的图象.

分析 利用换元法,设2x+1=t,利用t表示出x,求出f(t)即可得出f(x),再求出f(x)的定义域和值域,画出f(x)的图象.

解答 解:设2x+1=t,则t∈R,
所以x=$\frac{t-1}{2}$,
所以f(t)=4×${(\frac{t-1}{2})}^{2}$+4×$\frac{t-1}{2}$-1=t2-2,
所以f(x)=x2-2,x∈R;
所以f(x)的定义域为R,值域为[-2,+∞);
画出函数f(x)的图象如图所示:

点评 本题考查了求函数的解析式、定义域和值域的应用问题,也考查了画函数图象的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=2x,则下列不等式中正确的是(  )
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(cos$\frac{3}{2}$)<f(sin$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$x2+alnx(a∈R).
(1)当a=-2时,求函数f(x)的单调区间;
(2)若当x>1时,不等式f(x)<x2-$\frac{1}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l:$\left\{\begin{array}{l}{x=\sqrt{2}+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P($\sqrt{2}$,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是各项为正数的等比数列,且a2=9,a4=81.
(1)求数列{an}的通项公式an
(2)若bn=log3an,求证:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.掷一次均匀的正六面体骰子,则出现奇数点的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数(1+i)z=2-3i(i为虚数单位),则z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2-4x+c,且 f (0)=-5,f (x)<0的解集是(-1,5).
(1)求 f (x)的解析式;
(2)求函数 f (x)在x∈[0,3]上的值域;
(3)设g(x)=f (x)-mx,且g(x)在区间[-2,2]上是单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x∈R,x2+2x+3≥0”的否定是?x∈R,x2+2x+3<0.

查看答案和解析>>

同步练习册答案