分析 (1)根据不等式的解集和方程的关系得出方程的跟,利用韦达定理求出函数的表达式;
(2)根据二次函数的图象和性质求解即可;
(3)根据题意可知对称轴不在区间内即可.
解答 解:(1)由f (x)<0,得:ax2-4x+c<0,不等式的解集是(-1,5),
故方程ax2-4x+c=0的两根是x=-1或x=5,
所以a=1,c=
所以f(x)=x2-4x-5,
(2)由(1)知,f(x)=x2-4x-5,
∵x∈[0,3],f(x)在[0,2]上为减函数,在[2,3]上为增函数.
∴当x=2时,f(x)取得最小值为f(2)=-9.
而当x=0时,f(0)=-5,当x=3时,f(3)=-8
∴f(x)在[0,3]上取得最大值为-5
∴函数f(x)在x∈[0,3]上的值域为[-9,-5].
(3)g(x)=x2-(m+4)x-5,依题意有$\frac{m+4}{2}≤-2或\frac{m+4}{2}≥2$,故m≤-8或m≥0
所以,m的取值范围是(-∞,-8]∪[0,+∞).
点评 考出来不等式和方程的关系和二次函数的图象和性质,属于基础题型,应熟练掌握.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{16}$ | B. | $\frac{13}{12}$ | C. | $\frac{13}{8}$ | D. | $\frac{13}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com