分析 通过裂项可得an=$\frac{1}{2}$( $\frac{1}{n}$-$\frac{1}{n+2}$),并项相消计算即可.
解答 解:∵an=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴S10=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{2}-\frac{1}{4}$)+($\frac{1}{3}-\frac{1}{5}$)+($\frac{1}{4}-\frac{1}{6}$)+…+($\frac{1}{10}-\frac{1}{12}$)]
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{11}$-$\frac{1}{12}$)=$\frac{175}{264}$,
故答案为:$\frac{175}{264}$;
点评 本题考查求数列的和,注意销项法的应用,解题方法的积累,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com