精英家教网 > 高中数学 > 题目详情
15.设0<α<π,且sin$\frac{α}{2}$=$\frac{\sqrt{3}}{3}$,则sinα=$\frac{2\sqrt{2}}{3}$.

分析 利用同角三角函数基本关系式求解余弦函数,然后利用二倍角公式求解即可.

解答 解:0<α<π,且sin$\frac{α}{2}$=$\frac{\sqrt{3}}{3}$,可得cos$\frac{α}{2}$=$\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$.
sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{\sqrt{3}}{3}×\frac{\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$.
故答案为:$\frac{2\sqrt{2}}{3}$.

点评 本题考查二倍角公式的应用,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知l1的斜率是x,l2过点A(-1,-3),B(3,5),且l1∥l2,则log${\;}_{\frac{1}{8}}$x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,则f(f(-2))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)若f(k•3x)+f(3x-9x-4)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\overrightarrow a$=(x-1,y),$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,则当x>0,y>0时,$\frac{1}{x}$+$\frac{1}{y}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=2x,则下列不等式中正确的是(  )
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(cos$\frac{3}{2}$)<f(sin$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若命题p:?x∈Z,ex<1,则?p为(  )
A.?x∈Z,ex<1B.?x∉Z,ex<1C.?x∈Z,ex≥1D.?x∉Z,ex≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=-$\frac{3}{5}$,求$\frac{cos(α-\frac{7π}{2})+2sin(3π-α)}{csc(3π+α)+sec(\frac{5π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是各项为正数的等比数列,且a2=9,a4=81.
(1)求数列{an}的通项公式an
(2)若bn=log3an,求证:数列{bn}是等差数列.

查看答案和解析>>

同步练习册答案