精英家教网 > 高中数学 > 题目详情
(本小题14分)已知函数,当时,有极大值
(1)求的值;(2)求函数的极小值。
解:(1)
(2)
本试题主要是考查了导数在研究函数中的运用。利用导数的符号与函数单调性的关系可知,函数的极值和解析式。
(1)由于函数,当时,有极大值;则说明当x=1时,导数值为零,其函数值为3,那么求解得到a,b的值。
(2)利用第一问的结论,求解导数,然后令导数值为零,判定单调性确定极值。
解:(1)时,

(2),令,得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分) 
已知函数处取得极值为2.
(Ⅰ)求函数的解析式;
(Ⅱ)若函数在区间上为增函数,求实数m的取值范围;
(Ⅲ)若图象上的任意一点,直线l的图象相切于点P,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(Ⅰ)若函数的图象在点处的切线与直线平行,求实数的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在一个半径为1的半球材料中截取三个高度均为h的圆柱,其轴截面如图所示,设三个圆柱体积之和为

(1) 求f(h)的表达式,并写出h的取值范围是 ;
(2) 求三个圆柱体积之和V的最大值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数,设其导函数,当时,恒有,令,则满足的实数x的取值范围是(   )
A.(-1,2)B.C.D.(-2,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的定义域为,导函数为,则满足的实数的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数上有最小值,则实数的取值范围是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数
(Ⅰ)若是函数的极值点,求实数的值;
(Ⅱ)若函数上是单调减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数
(1)若函数上为增函数,求正实数的取值范围;
(2)讨论函数的单调性;
(3)当时,求证:对大于的任意正整数,都有

查看答案和解析>>

同步练习册答案