精英家教网 > 高中数学 > 题目详情
,函数
(Ⅰ)若是函数的极值点,求实数的值;
(Ⅱ)若函数上是单调减函数,求实数的取值范围.
(Ⅰ).    (Ⅱ).   
本试题主要考查了导数的极值的必要不充分条件:导数为零的运用,以及给定函数单调区间,求解参数的取值范围的综合运用。
(1)中,因为是函数的极值点在,则必然在导数值为零,得到a的值,然后验证。
(2)利用函数在给定区间单调递增,则等价于,不等式恒成立.,利用分类参数的思想,求解不等式右边函数的 最值即可。
解:(Ⅰ)
因为是函数的极值点,所以,即
所以.经检验,当时,是函数的极值点.即.    6分
(Ⅱ)由题设,,又
所以,
这等价于,不等式恒成立.
),则
所以在区间上是减函数,所以的最小值为
所以.即实数的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知函数,当时,有极大值
(1)求的值;(2)求函数的极小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中,求的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调区间;
(2)当时,若方程有两个不同的实根
(ⅰ)求实数的取值范围;
(ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求函数的最小值;
(2)若上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取到极值2.
(Ⅰ)求的值;
(Ⅱ)试研究曲线的所有切线与直线垂直的条数;
(Ⅲ)若对任意,均存在,使得,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x2㏑x的单调递减区间为
A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)(本小题14分)已知函数为实数).
(1)当时, 求的最小值;
(2)若上是单调函数,求的取值范围.

查看答案和解析>>

同步练习册答案