精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知函数
(1)若函数上为增函数,求正实数的取值范围;
(2)讨论函数的单调性;
(3)当时,求证:对大于的任意正整数,都有
解:(1)∵      ∴            ......1
∵ 函数上为增函数 ∴ 恒成立
恒成立,即恒成立∴   4分
(2),   
时,恒成立,的增区间为 ......5     
时,    
的增区间为,减区间为()......6 
(3)当时,,故上为增函数。
时,令,则,故               ......8
∴ ,即   
∴                
第一问利用求导数,利用函数上为增函数
恒成立
来解决
第二问,   
时,恒成立,的增区间为  
时,    的增区间为,减区间为().
第三问a=1时,,故上为增函数。
当n>1时,令,则x>1,故
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知函数,当时,有极大值
(1)求的值;(2)求函数的极小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x2㏑x的单调递减区间为
A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
(1)若的极值点,求值;
(2)若函数上是增函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 设函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)当时,若函数上是增函数,求的取值范围;
(Ⅲ)若,不等式对任意恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数,(1)求函数极值.(2)求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)(本小题14分)已知函数为实数).
(1)当时, 求的最小值;
(2)若上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx+c在x=与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)若对,不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案