精英家教网 > 高中数学 > 题目详情
10.直线l:y=k(x+$\sqrt{2}$)与曲线C:x2-y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是(  )
A.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)D.[0,π)

分析 首先根据题意直线l:y=k(x+$\sqrt{2}$)与曲线x2-y2=1(x<0)相交于A、B两点,进一步判断直线的斜率和渐近线的斜率的关系求出结果.

解答 解:曲线x2-y2=1(x<0)的渐近线方程为:y=±x
直线l:y=k(x+$\sqrt{2}$)与相交于A、B两点
所以:直线的斜率k>1或k<-1
α∈($\frac{π}{4}$,$\frac{3π}{4}$)
由于直线的斜率存在:倾斜角a≠$\frac{π}{2}$,
故直线l的倾斜角的取值范围是($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)
故选:A.

点评 本题考查的知识要点:直线与双曲线的关系,直线的斜率和渐近线的斜率的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若复数z满足$\frac{zi}{z-i}$=1,其中i为虚数单位,则复数z的模为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知空间四边形ABCD,满足|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值(  )
A.-1B.0C.$\frac{21}{2}$D.$\frac{33}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-$\frac{1}{2}$,则m的值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$(t为参数,a∈R),曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|y=lg(x-1)},B={x|2${\;}^{{x}^{2}-2x}$<1},则A∩B=(  )
A.{x|x>1}B.{x|x>0}C.{x|0<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$若|f(x)|+a≥ax,则a的取值范围是(  )
A.[-2,0)B.[0,1]C.(0,1]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.
(1)求函数y=f(x)图象的对称轴方程;
(2)讨论函数f(x)在$[0,\frac{π}{2}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=log1664,b=lg0.2,c=20.2,则(  )
A.c<b<aB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

同步练习册答案