精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.
(1)求函数y=f(x)图象的对称轴方程;
(2)讨论函数f(x)在$[0,\frac{π}{2}]$上的单调性.

分析 (1)利用辅助角公式化简函数的解析式,根据正弦函数的周期性求得ω,可得其解析式,利用正弦函数的图象的对称求得函数y=f(x)图象的对称轴方程.
(2)利用正弦函数的单调性求得函数f(x)在$[0,\frac{π}{2}]$上的单调性.

解答 解:(1)∵$f(x)=sinωx-cosωx=\sqrt{2}sin(ωx-\frac{π}{4})$,且T=π,∴ω=2.
于是$f(x)=\sqrt{2}sin(2x-\frac{π}{4})$,令$2x-\frac{π}{4}=kπ+\frac{π}{2}$,得$x=\frac{kπ}{2}+\frac{3π}{8}(k∈Z)$,
即函数f(x)的对称轴方程为$x=\frac{kπ}{2}+\frac{3π}{8}(k∈Z)$.
(2)令$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,得函数f(x)的单调增区间为$[kπ-\frac{π}{8},kπ+\frac{3π}{8}](k∈Z)$.
注意到$x∈[0,\frac{π}{2}]$,令k=0,
得函数f(x)在$[0,\frac{π}{2}]$上的单调增区间为$[0,\frac{3π}{8}]$;
同理,求得其单调减区间为$[\frac{3π}{8},\frac{π}{2}]$.

点评 本题主要考查辅助角公式,正弦函数的周期性、单调性、以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的公差d>0,前n项和为Sn,已知3$\sqrt{5}$是-a2与a9的等比中项,S10=-20.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}|{a}_{n+1}|}$,求数列{bn}的前n项和Tn(n≥6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:y=k(x+$\sqrt{2}$)与曲线C:x2-y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是(  )
A.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)D.[0,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,抛物线y2=2px(p>0)和圆x2+y2-px=0,直线l经过抛物线的焦点,依次交抛物线与圆于A,B,C,D四点,|AB|•|CD|=2则p的值为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)={sin^4}x+{cos^4}x,x∈[-\frac{π}{4},\frac{π}{4}]$,若f(x1)<f(x2),则一定有(  )
A.x1<x2B.x1>x2C.${x_1}^2<{x_2}^2$D.${x_1}^2>{x_2}^2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.
(1)求出圆C的直角坐标方程;
(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设实数x,y满足不等式$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}\right.$,目标函数z=ax+y的最大值不大于3a,则实数a的取值范围为a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:“?x∈R,使”4x+2x+1-m=0”,若“¬p”为假命题,则实数m的取值范围是(  )
A.(-1,+∞)B.(0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{cosx}{x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案