精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|y=lg(x-1)},B={x|2${\;}^{{x}^{2}-2x}$<1},则A∩B=(  )
A.{x|x>1}B.{x|x>0}C.{x|0<x<2}D.{x|1<x<2}

分析 先分别求出集合A和B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={x|y=lg(x-1)}={x|x>1},
B={x|2${\;}^{{x}^{2}-2x}$<1}={x|0<x<2},
∴A∩B={x|1<x<2}.
故选:D.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知a∈[0,6],使得函数f(x)=lg(ax2-ax+1)的定义域为R的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)设k为整数,化简$\frac{sin(kπ-α)cos[(k+1)π-α]}{sin[(k-1)π+α]cos(kπ+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=20x的焦点F恰好为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:y=k(x+$\sqrt{2}$)与曲线C:x2-y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是(  )
A.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)D.[0,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若α∈($\frac{π}{2}$,π),则3cos2α=cos($\frac{π}{4}$+α),则sin2α的值为(  )
A.$\frac{1}{18}$B.-$\frac{1}{18}$C.$\frac{17}{18}$D.-$\frac{17}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,抛物线y2=2px(p>0)和圆x2+y2-px=0,直线l经过抛物线的焦点,依次交抛物线与圆于A,B,C,D四点,|AB|•|CD|=2则p的值为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.
(1)求出圆C的直角坐标方程;
(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为$\frac{4}{3}$π,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A、B两点,线段AB的中点为P.
(1)求椭圆C的标准方程;
(2)过点P垂直于AB的直线与x轴交于点D($\frac{1}{7}$,0),求k的值.

查看答案和解析>>

同步练习册答案