精英家教网 > 高中数学 > 题目详情
5.已知a∈[0,6],使得函数f(x)=lg(ax2-ax+1)的定义域为R的概率为$\frac{2}{3}$.

分析 根据对数函数以及二次函数的性质求出使得函数f(x)的定义域是R的a的范围,根据区间长度的比值求出满足条件的概率的值即可.

解答 解:若f(x)=lg(ax2-ax+1)的定义域为R,
则函数g(x)=ax2-ax+1>0恒成立,
a=0时,显然成立,
a≠0时,只需$\left\{\begin{array}{l}{a>0}\\{△{=a}^{2}-4a<0}\end{array}\right.$,
解得:0<a<4,
综上,a∈[0,4),
故满足条件的概率p=$\frac{4}{6}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题考查了对数函数以及二次函数的性质,考查几何概型问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.假设小明订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到,小明离家的时间在早上7:00-8:00之间,则他在离开家之前能拿到报纸的概率(  )
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,则|$\frac{(-1+i)(1+i)}{{i}^{3}}$|=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为(  )
A.66B.33C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足$\frac{zi}{z-i}$=1,其中i为虚数单位,则复数z的模为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.京剧是我国的国粹,是“国家级非物质文化遗产”,为纪念著名京剧表演艺术家、京剧艺术大师梅兰芳先生,某市电视台举办《我爱京剧》的比赛,并随机抽取100位参与《我爱京剧》比赛节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分组区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.
(Ⅰ)若抽取的这100位参与节目的票友的平均年龄为53,据此估计表中a,b的值(同一组中的数据用该组区间的终点值作代表);
(Ⅱ)在(Ⅰ)的条件下,若按分层抽样的方式从中再抽取20人,参与有关京剧知识的问答,分别求抽取的年龄在[60,70)和[70,80]的票友中人数;
(Ⅲ)根据(Ⅱ)中抽取的人数,从年龄在[60,80)的票友中任选2人,求这两人年龄都在[60,70)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式|ax-2|+a|x-1|≥2(a>0).
(1)当a=1时,求不等式的解集;
(2)若不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为(  )
A.31.2B.32.4C.33.6D.34.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|y=lg(x-1)},B={x|2${\;}^{{x}^{2}-2x}$<1},则A∩B=(  )
A.{x|x>1}B.{x|x>0}C.{x|0<x<2}D.{x|1<x<2}

查看答案和解析>>

同步练习册答案