10£®¾©¾çÊÇÎÒ¹úµÄ¹ú´â£¬ÊÇ¡°¹ú¼Ò¼¶·ÇÎïÖÊÎÄ»¯ÒŲú¡±£¬Îª¼ÍÄîÖøÃû¾©¾ç±íÑÝÒÕÊõ¼Ò¡¢¾©¾çÒÕÊõ´óʦ÷À¼·¼ÏÈÉú£¬Ä³ÊеçÊǪ́¾Ù°ì¡¶ÎÒ°®¾©¾ç¡·µÄ±ÈÈü£¬²¢Ëæ»ú³éÈ¡100λ²ÎÓë¡¶ÎÒ°®¾©¾ç¡·±ÈÈü½ÚÄ¿µÄƱÓѵÄÄêÁä×÷ΪÑù±¾½øÐзÖÎöÑо¿£¨È«²¿Æ±ÓѵÄÄêÁä¶¼ÔÚ[30£¬80]ÄÚ£©£¬Ñù±¾Êý¾Ý·Ö×éÇø¼äΪ[30£¬40£©£¬[40£¬50£©£¬[50£¬60£©£¬[60£¬70£©£¬[70£¬80]£¬Óɴ˵õ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ñ£©Èô³éÈ¡µÄÕâ100λ²ÎÓë½ÚÄ¿µÄƱÓÑµÄÆ½¾ùÄêÁäΪ53£¬¾Ý´Ë¹À¼Æ±íÖÐa£¬bµÄÖµ£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖÕµãÖµ×÷´ú±í£©£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èô°´·Ö²ã³éÑùµÄ·½Ê½´ÓÖÐÔÙ³éÈ¡20ÈË£¬²ÎÓëÓйؾ©¾ç֪ʶµÄÎʴ𣬷ֱðÇó³éÈ¡µÄÄêÁäÔÚ[60£¬70£©ºÍ[70£¬80]µÄƱÓÑÖÐÈËÊý£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©ÖгéÈ¡µÄÈËÊý£¬´ÓÄêÁäÔÚ[60£¬80£©µÄƱÓÑÖÐÈÎÑ¡2ÈË£¬ÇóÕâÁ½ÈËÄêÁä¶¼ÔÚ[60£¬70£©ÄڵĸÅÂÊ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼µÄÐÔÖÊÁгö·½³Ì×飬ÄÜÇó³öa£¬b£®
£¨¢ò£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼µÄÐÔÖÊÄêÁäÄÜÇó³öÔÚ[60£¬70£©µÄƱÓѺÍÄêÁäÔÚ[70£¬80]µÄƱÓÑÐè³éÈ¡µÄÈËÊý£®
£¨¢ó£©ÉèÄêÁäÔÚ[70£¬80]ËêµÄƱÓÑÕâA£¬ÔÚ[60£¬70£©ËêµÄƱÓÑΪa£¬b£¬c£¬d£¬Ôò´ÓÖгéÈ¡´ÓÖгéÈ¡2È˵Ļù±¾Ê¼þ×ÜÊýÓÐn=${C}_{5}^{2}$=10£¬ÀûÓÃÁоٷ¨ÄÜÇóÇó³öÕâÁ½ÈËÄêÁä¶¼ÔÚ[60£¬70£©ÄڵĸÅÂÊ£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼µÃ£º
$\left\{\begin{array}{l}{£¨0.01+0.03+b+0.02+a£©¡Á10=1}\\{0.1¡Á35+0.3¡Á45+10b¡Á55+0.2¡Á65+10a¡Á75=53}\end{array}\right.$£¬
½âµÃa=0.005£¬b=0.035£®
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÑù±¾ÄêÁäÔÚ[70£¬80£©ËêµÄƱÓѹ²ÓÐ0.05¡Á100=5ÈË£¬
Ñù±¾ÄêÁäÔÚ[60£¬70£©ËêµÄƱÓѹ²ÓÐ0.2¡Á100=20ÈË£¬
Ñù±¾ÄêÁäÔÚ[50£¬60£©ËêµÄƱÓѹ²ÓÐ0.35¡Á100=35ÈË£¬
Ñù±¾ÄêÁäÔÚ[40£¬50£©ËêµÄƱÓѹ²ÓÐ0.3¡Á100=30ÈË£¬
Ñù±¾ÄêÁäÔÚ[30£¬40£©ËêµÄƱÓѹ²ÓÐ0.1¡Á100=10ÈË£¬
¡àÄêÁäÔÚ[60£¬70£©µÄƱÓÑÐè³éÈ¡20¡Á$\frac{20}{100}$=4ÈË£¬
ÄêÁäÔÚ[70£¬80]µÄƱÓÑÐè³éÈ¡5¡Á$\frac{20}{100}=1$ÈË£®
£¨¢ó£©ÉèÄêÁäÔÚ[70£¬80]ËêµÄƱÓÑÕâA£¬ÔÚ[60£¬70£©ËêµÄƱÓÑΪa£¬b£¬c£¬d£¬
Ôò´ÓÖгéÈ¡´ÓÖгéÈ¡2È˵Ļù±¾Ê¼þ×ÜÊýÓÐn=${C}_{5}^{2}$=10£¬
ÕâÁ½ÈËÄêÁä¶¼ÔÚ[60£¬70£©ÄڵĻù±¾Ê¼þÓУº
£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨c£¬d£©£¬¹²6ÖÖ£¬
ÕâÁ½ÈËÄêÁä¶¼ÔÚ[60£¬70£©ÄڵĸÅÂÊP=$\frac{6}{10}=\frac{3}{5}$£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êýy=2sin£¨¦Øx+¦Õ£©ÎªÅ¼º¯Êý£¨0£¼¦Õ£¼¦Ð£©£¬ÆäͼÏóÓëÖ±Ïßy=2ÏàÁÚµÄÁ½¸ö½»µãµÄºá×ø±ê·Ö±ðΪx1£¬x2ÇÒ|x1-x2|=¦ÐÔò£¨¡¡¡¡£©
A£®¦Ø=2£¬¦Õ=$\frac{¦Ð}{2}$B£®¦Ø=$\frac{1}{2}$£¬¦Õ=$\frac{¦Ð}{2}$C£®¦Ø=$\frac{1}{2}$£¬¦Õ=$\frac{¦Ð}{4}$D£®¦Ø=2£¬¦Õ=$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒÖÜÆÚΪ2£¬µ±x¡Ê£¨0£¬1]ʱ£¬f£¨x£©=1-x£¬Ôòº¯Êýf£¨x£©ÔÚ[0£¬2017]ÉϵÄÁãµã¸öÊýÊÇ£¨¡¡¡¡£©
A£®1008B£®1009C£®2017D£®2018

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={x|x2-2x£¾0}£¬B=[0£¬4]£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®[-4£¬-1£©B£®£¨2£¬4]C£®[-4£¬-1£©¡È£¨2£¬4]D£®[2£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªa¡Ê[0£¬6]£¬Ê¹µÃº¯Êýf£¨x£©=lg£¨ax2-ax+1£©µÄ¶¨ÒåÓòΪRµÄ¸ÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨n£¾0£¬b£¾0£©ÉÏÒ»µãC£¬¹ýË«ÇúÏßµÄÖÐÐÄ×÷Ö±Ïß½»Ë«ÇúÏßÓÚA£¬BÁ½µã£¬¼ÇÖ±ÏßAC£¬BCµÄбÂÊ·Ö±ðΪk1£¬k2£¬µ±$\frac{2}{{k}_{1}{k}_{2}}$+ln|k1|+ln|k2|È¡×îСֵʱ£¬Ë«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{5}$C£®$\sqrt{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬SnΪÆäǰnÏîºÍ£¬S4=¦Ð£¨ÆäÖЦÐΪԲÖÜÂÊ£©£¬a4=2a2£¬ÏÖ´Ó´ËÊýÁеÄǰ30ÏîÖÐËæ»úѡȡһ¸öÔªËØ£¬Ôò¸ÃÔªËØµÄÓàÏÒֵΪ¸ºÊýµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{7}{15}$B£®$\frac{1}{2}$C£®$\frac{8}{15}$D£®$\frac{7}{30}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=an-an-1£¨n¡Ý2£©£¬a1=m£¬a2=n£¬SnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÔòS2017µÄֵΪ£¨¡¡¡¡£©
A£®2017n-mB£®n-2017mC£®mD£®n

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô¦Á¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬Ôò3cos2¦Á=cos£¨$\frac{¦Ð}{4}$+¦Á£©£¬Ôòsin2¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{18}$B£®-$\frac{1}{18}$C£®$\frac{17}{18}$D£®-$\frac{17}{18}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸