精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.

(Ⅰ)求直线及圆的极坐标方程;

(Ⅱ)若直线与圆交于两点,求的值.

【答案】(Ⅰ)直线的极坐标方程为.圆的极坐标方程为.(Ⅱ)

【解析】

(Ⅰ)将直线的参数方程转化为普通方程,然后利用公式将直线与圆的方程转化为极坐标即可;

(Ⅱ)利用极坐标方程求出直线与圆交点的极角,根据图形即可求得

解:(Ⅰ)由直线的参数方程

得其普通方程为

∴直线的极坐标方程为

又∵圆的方程为

代入圆的方程,

化简得,

∴圆的极坐标方程为

(Ⅱ)将直线与圆联立方程组,

解得

整理得

不妨记点对应的极角为

对应的极角为,且

于是,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且 .

(1)若 分别为 的中点,求证: 平面

(2)若 与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】早在一千多年之前,我国已经把溢流孔用于造桥技术,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同.根据图上尺寸,在平面直角坐标系中,桥拱所在抛物线的方程为_______,溢流孔与桥拱交点的坐标为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆 所围成的平面图形绕 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥S-ABCD中,底面ABCD为长方形,底面,其中的可能取值为:

1)求直线与平面所成角的正弦值;

2)若线段CD上能找到点E,满足的点有两个,分别记为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】前些年有些地方由于受到提高的影响,部分企业只重视经济效益而没有树立环保意识,把大量的污染物排放到空中与地下,严重影响了人们的正常生活,为此政府进行强制整治,对不合格企业进行关闭、整顿,另一方面进行大量的绿化来净化和吸附污染物.通过几年的整治,环境明显得到好转,针对政府这一行为,老百姓大大点赞.

(1)某机构随机访问50名居民,这50名居民对政府的评分(满分100分)如下表:

分数

频数

2

3

11

14

11

9

请在答题卡上作出居民对政府的评分频率分布直方图:

(2)当地环保部门随机抽测了2018年11月的空气质量指数,其数据如下表:

空气质量指数(

0-50

50-100

100-150

150-200

天数

2

18

8

2

用空气质量指数的平均值作为该月空气质量指数级别,求出该月空气质量指数级别为第几级?(同一组数据用该组数据的区间中点值作代表,将频率视为概率)(相关知识参见附表)

(3)空气受到污染,呼吸系统等疾病患者最易感染,根据历史经验,凡遇到空气轻度污染,小李每天会服用有关药品,花费50元,遇到中度污染每天服药的费用达到100元.环境整治前的2015年11月份小李因受到空气污染患呼吸系统等疾病花费了5000元,试估计2018年11月份(参考(2)中表格数据)小李比以前少花了多少钱的医药费?

附:

空气质量指数(

0-50

50-100

100-150

150-200

200-300

空气质量指数级别

空气质量指数

轻度污染

中度污染

重度污染

严重污染

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即,此数列在现代物理、准晶体结构及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列,又记数列满足,则的值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线Cx2=4y的焦点为F,直线l与抛物线C交于AB两点,延长AF交抛物线C于点D,若AB的中点纵坐标为|AB|-1,则当∠AFB最大时,|AD|=(  )

A. 4B. 8C. 16D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,的中点,线段交于点(如图1.沿折起到的位置,使得二面角为直二面角(如图2.

1)求证:平面

2)线段上是否存在点,使得与平面所成角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案