精英家教网 > 高中数学 > 题目详情
8.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AD⊥DC,平面PAD⊥底面ABCD,Q为AD中点,M是棱PC的中点.△PAD是边长为2的正三角形,BC=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)求二面角M-BQ-C平面角θ的大小.

分析 (1)推导出四边形BCDQ为平行四边形,从而CD∥BQ,QB⊥AD,进而BQ⊥平面PAD,由此能证明平面PQB⊥平面PAD.
(2)连接CQ,BD交于一点H,连接MH,则MH∥PQ,取QB中点N,连接MN,NH,则QB⊥平面MHN,∠MNH为所求角θ,由此能出二面角M-BQ-C平面角θ的大小.

解答 证明:(1)∵AD∥BC,$BC=\frac{1}{2}AD$,Q为AD的中点,则BC=QD,
∴四边形BCDQ为平行四边形,∴CD∥BQ.(2分)
∵AD⊥DC,∴QB⊥AD,
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.(4分)
∴BQ⊥平面PAD.
∵BQ?平面PQB,∴平面PQB⊥平面PAD.(6分)
解:(2)连接CQ,BD交于一点H,连接MH,则MH是△PCQ的中位线,
∴MH∥PQ,
∵PA=PD,Q为AD的中点,∴PQ⊥AD,
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD,∴MH⊥平面QBC,∴MH⊥QB.(8分)
取QB中点N,连接MN,NH,
又∵NH是△QBC的中位线,∴NH∥BC,
∴NH⊥QB,则QB⊥平面MHN,∴∠MNH为所求角θ,
在RT△MNH中,$NH=\frac{1}{2}BC=\frac{1}{2}$,$MH=\frac{1}{2}PQ=\frac{{\sqrt{3}}}{2}$,
∴$tanθ=\frac{MH}{NH}=\sqrt{3}$,∵θ∈(0,π),∴$θ=\frac{π}{3}$.
∴二面角M-BQ-C平面角θ的大小为$\frac{π}{3}$.(12分)

点评 本题考查面面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)对?x∈R都有f(x)=f(4-x),且其导函数f′(x)满足当x≠2时,(x-2)f′(x)>0,则当2<a<4时,有(  )
A.f(2a)<f(2)<f(log2a)B.f(2)<f(2a)<f(log2a)C.f(log2a)<f(2a)<f(2)D.f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,已知点A(2,0),直线l:x+y-5=0,点B(x,y)是圆C:x2+2x+y2-1=0上的动点,AD⊥l,BE⊥l,垂足分别为D,E,则线段DE的最大值是(  )
A.$\sqrt{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$2\sqrt{2}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线2x+(y-3)m-4=0(m∈R)恒过定点P,若点P平分圆x2+y2-2x-4y-4=0的弦MN,则弦MN所在的直线方程是x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{x}{k}$-lnx(k>0)
(1)求f(x)的最小值;
(2)若k=2,判断方程f(x)-1=0在区间($\frac{1}{e}$,1)内实数解的个数;
(3)证明:对任意给定的M>0,总存在正数x0,使得当x>x0时,恒有$\frac{x}{2}$-M>lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点O是三角形ABC的边BC靠近B的一个三等分点,过点O的直线交直线AB、AC分别于M、N;$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}$,则$\frac{2}{m}+\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知过点P(0,2)的直线l与圆(x-1)2+y2=5相切,且与直线ax-2y+1=0垂直,则a=(  )
A.2B.4C.-4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1),F1,F2为椭圆的两个焦点,且F1,F2到直线$\frac{x}{a}$$+\frac{y}{b}$=1的距离之和为$\sqrt{3}$b,则其离心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若tanθ=$\sqrt{3}$,则$\frac{sin2θ}{1+cos2θ}$=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案