精英家教网 > 高中数学 > 题目详情
20.已知过点P(0,2)的直线l与圆(x-1)2+y2=5相切,且与直线ax-2y+1=0垂直,则a=(  )
A.2B.4C.-4D.1

分析 由题意判断点在圆上,求出P与圆心连线的斜率就是直线ax-2y+1=0的斜率,然后求出a的值即可.

解答 解:因为点P(0,2)满足圆(x-1)2+y2=5的方程,所以P在圆上,
又过点P(0,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-2y+1=0垂直,
所以切点与圆心连线与直线ax-2y+1=0平行,
所以直线ax-2y+1=0的斜率为:$\frac{a}{2}=\frac{2-0}{0-1}$,
所以a=-4.
故选:C.

点评 本题考查直线与圆的位置关系,直线与直线的垂直,考查转化思想与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
 序号 1 2 3 4 5 6 7 8 9 10 1112 13  14 1516  17 1819 20 
 数学成绩 9575  80 94 92 65 67 84 98 7167 93  64 78 77 90 57 83 7283 
 物理成绩 90 63 7287  91 71 58 82 93 81 77 82 48 85 69 91 6184  7886 
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的学生成绩与物理成绩有关系(  )
参考数据公式:①独立性检验临界值表
 P(K2≥k0 0.50 0.40 0.25 015. 0.10 0.05 0.0250.010 0.005  0001
 k0 0.4550.708  1.323 2.072 2.706 3.841 5.024 6356. 7.879 10.828
②独立性检验随机变量K2的值的计算公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
A.99.9%B.99.5%C.97.5%D.95%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=|log2|x-1||,且关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数根,若最小的实数根为-3,则a+b的值为(  )
A.-2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AD⊥DC,平面PAD⊥底面ABCD,Q为AD中点,M是棱PC的中点.△PAD是边长为2的正三角形,BC=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)求二面角M-BQ-C平面角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)是定义在(0,+∞)的函数,且f(x)>0.满足2f(x)+xf′(x)>0,则下列不等式正确的是(  )
A.2016f(2016)>2015f(2015)B.2016f(2016)<2015f(2015)
C.20152f(2015)<20162f(2016)D.20152f(2015)>20162f(2016)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过原点且倾斜角为60°的直线被圆x2+y2-4x=0所截得的弦长为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个四棱锥的底面为正方形,其三视图如图所示,根据图中标出的尺寸(单位:cm),则这个四棱锥的外接球的表面积是13π.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

函数为偶函数,且在单调递增,则的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.将5个小球放到3个盒子中,在下列条件下各有多少种投放方法:
(1)小球不同,盒子不同,盒子不空;
(2)小球不同,盒子不同,盒子可空;
(3)小球相同,盒子不同,盒子不空.

查看答案和解析>>

同步练习册答案