精英家教网 > 高中数学 > 题目详情
20.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ=120°,那么实数x为何值时,|$\overrightarrow{a}$-x$\overrightarrow{b}$|的值最小.

分析 运用向量的数量积的定义,可得$\overrightarrow{a}$•$\overrightarrow{b}$=-2,令y=|$\overrightarrow{a}$-x$\overrightarrow{b}$|,由向量的平方即为模的平方,结合二次函数的最值的求法,即可得到所求值.

解答 解:由|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ=120°,
可得$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos120°=2×2×(-$\frac{1}{2}$)=-2,
令y=|$\overrightarrow{a}$-x$\overrightarrow{b}$|,则y2=|$\overrightarrow{a}$-x$\overrightarrow{b}$|2=$\overrightarrow{a}$2-2x$\overrightarrow{a}$•$\overrightarrow{b}$+x2$\overrightarrow{b}$2
=4+4x+4x2=4(x+$\frac{1}{2}$)2+3,
即有当x=-$\frac{1}{2}$时,|$\overrightarrow{a}$-x$\overrightarrow{b}$|的值取得最小值,且为$\sqrt{3}$.

点评 本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,同时考查二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.对条件语句的描述正确的是(  )
A.ESLE后面的语句不可以是条件语句
B.两个条件语句可以共用一个END IF语句
C.条件语句可以没有ELSE后的语句
D.条件语句中IF-THEN语句和ELSE后的语句必须同时存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC中,角A,B,C的对边分别为a,b,c,a:b:c=2:3:4,则$\frac{sinA-2sinB}{sin2C}$等于(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若角α的终边与$\frac{π}{6}$的终边关于直线y=x对称,且α∈(-4π,4π),则α=-$\frac{11π}{3}$,-$\frac{5π}{3}$,$\frac{π}{3}$,$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在?ABCD中,AD=1,∠BAD=60°,E为CD的中点,若$\overrightarrow{AC}$$•\overrightarrow{BE}$=1,则$\overrightarrow{AE}$$•\overrightarrow{AC}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求数列1$\frac{1}{2}$,3$\frac{3}{4}$,5$\frac{7}{8}$,7$\frac{15}{16}$,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2cos(2x+$\frac{π}{3}$)-2cos2x+1.
(1)试将函数f(x)化为f(x)=Asin(ωx+φ)+B(ω>0)的形式,并求该函数的对称中心;
(2)若锐角△ABC中,A、B、C所对的边分别为a、b、c,且f(A)=0,求$\frac{b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=sin($\frac{3π}{4}$-x)sin($\frac{3π}{4}$+x)的值域是[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=sin2x-sinx,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]的值域.

查看答案和解析>>

同步练习册答案