精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=﹣ x3+ x2﹣6x+5的单调增区间是(
A.(﹣∞,2)和(3,+∞)
B.(2,3)
C.(﹣1,6)
D.(﹣3,﹣2)

【答案】B
【解析】解:对函数f(x)=﹣ x3+ x2﹣6x+5求导,得f′(x)=﹣x2+5x﹣6, 令f′(x)>0,即﹣x2+5x﹣6>0,可得x2﹣5x+6<0,解得,2<x<3,
∴函数f(x)=﹣ x3+ x2﹣6x+5的单调增区间为:(2,3).
故选:B.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为(
A.18
B.24
C.36
D.48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ex﹣alnx(其中a∈R,e为自然常数)
a∈R,使得直线y=ex为函数f(x)的一条切线;
②对a<0,函数f(x)的导函数f′(x)无零点;
③对a<0,函数f(x)总存在零点;
则上述结论正确的是 . (写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某数n3按上述规律展开后,发现右边含有“2017”这个数,则:n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0). (Ⅰ)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论函数的单调性;

2)若,求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx﹣a+2
(1)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,b的值;
(2)若b=2,a>0,解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , ①求a的取值范围;
②证明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间

时,若函数在区间内单调递减,求的取值范围.

查看答案和解析>>

同步练习册答案