精英家教网 > 高中数学 > 题目详情
20.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是①②⑤(写出所有正确命题的编号).
①当$0<CQ<\frac{1}{2}$时,S为四边形    
②当$CQ=\frac{1}{2}$时,S为等腰梯形
③当$CQ=\frac{3}{4}$时,S与C1D1的交点R满足${C_1}{R_1}=\frac{1}{4}$
④当$\frac{3}{4}<CQ<1$时,S为六边形    
⑤当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.

分析 过点A,P,Q的平面必与面ADA1,BC1C相交,且交线平行,据此,当Q为C1C中点时,截面与面ADD1交与AD1,为等腰梯形,据此可以对①②进行判断;
连接AP,延长交DC于一点M,再连接MQ并延长其交D1D于N,连接AN,可见,截面此时不会与面ABB1相交,据此判断③,
当CQ=1时,截面为底为 $\sqrt{2}$,腰长为 $\frac{\sqrt{5}}{2}$的等腰梯形,由此可求其面积.判断④.
求出面积判断⑤的正误.

解答 解:连接AP并延长交DC于M,再连接MQ,
对于①,当0<CQ<$\frac{1}{2}$时,MQ的延长线交线段D1D与点N,且N在D1与D之间,连接AN,则截面为四边形APQN;①正确;
当CQ=$\frac{1}{2}$时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,
故可得截面APQD1为等腰梯形,故②正确;
由上图当点Q向C移动时,满足0<CQ<$\frac{1}{2}$,只需在DD1上取点M满足AM∥PQ,
即可得截面为四边形APQM,故①正确;
③当CQ=$\frac{3}{4}$时,如图,
延长DD1至N,使D1N=$\frac{1}{2}$,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,
可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=$\frac{1}{3}$,故③不正确;
④由③可知当$\frac{3}{4}$<CQ<1时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;
⑤当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,
可知截面为APC1F为菱形,故其面积为$\frac{1}{2}$AC1•PF=$\frac{1}{2}$•$\sqrt{3}$•$\sqrt{2}$=$\frac{\sqrt{6}}{2}$,故正确.
故答案为:①②⑤

点评 此题考查了截面的性质,关键是利用面面平行、面面相交的性质确定截面的顶点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.f(x)=$\frac{x}{sinx}({x∈({-π,0})∪({0,π})})$大致的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.3∈{x+2,x2+2x},则x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元)4235
销售额(万元)49263954
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\hat{a}$;
(2)据此模型预报广告费用为7万元时的销售额.
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\hat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U={l,3,5,7,9},集合M={1,a-5},M⊆U且∁UM={3,5,7},则实数a=14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某企业常年生产一种出口产品,根据预测可知,进入2l世纪以来,该产品的产量平稳增长.记2008年为第1年,且前4年中,第x年与年产量f(x) (万件)之间的关系如下表所示:
x1234
f(x) 4.005.587.008.44
以下有三种函数模型:f(x)=ax+b,f(x)=2x+a,f(x)=log${\;}_{\frac{1}{2}}$x+a
(1)找出你认为最适合的函数模型,并说明理由,然后选取08年和10年的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2014年的年产量比预计减少30%,试根据所建立的函数模型,确定2014年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1)($\frac{1}{8}$)${\;}^{-\frac{2}{3}}$-$\root{4}{(-3)^{4}}$+(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(1.5)2
(2)(lg5)2+lg2•lg50-log${\;}_{\frac{1}{2}}$8+log3$\frac{\root{4}{27}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sin(α+$\frac{π}{3}$)+cos(α-$\frac{π}{2}$)=-$\frac{4\sqrt{3}}{5}$,-$\frac{π}{2}$<α<0,则cos(α+$\frac{2π}{3}$)等于(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个空间几何体的三视图如右图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为4+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案