精英家教网 > 高中数学 > 题目详情
5.某企业常年生产一种出口产品,根据预测可知,进入2l世纪以来,该产品的产量平稳增长.记2008年为第1年,且前4年中,第x年与年产量f(x) (万件)之间的关系如下表所示:
x1234
f(x) 4.005.587.008.44
以下有三种函数模型:f(x)=ax+b,f(x)=2x+a,f(x)=log${\;}_{\frac{1}{2}}$x+a
(1)找出你认为最适合的函数模型,并说明理由,然后选取08年和10年的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2014年的年产量比预计减少30%,试根据所建立的函数模型,确定2014年的年产量.

分析 (1)把给出的三个模型分别验证,即可找出一个比较适合的模型;
(2)利用(1)的模型,先计算出预计的2014的产量,再去掉减少30%即可得出.

解答 解:(1)符合条件的是f(x)=ax+b,
若模型为f(x)=2x+a,则由f(1)=2+a=4,得a=2,即f(x)=2x+2,
此时f(2)=6,f(3)=10,f(4)=18,与已知相差太大,不符合.
若模型为f(x)=log${\;}_{\frac{1}{2}}$x+a,则f(x)是减函数,与已知不符合.
由已知得$\left\{\begin{array}{l}{a+b=4}\\{3a+b=7}\end{array}\right.$,解得a=$\frac{3}{2}$,b=$\frac{5}{2}$,
∴f(x)=$\frac{3}{2}$x+$\frac{5}{2}$,(x=1,2,…,6,7)经验证x=2,4,符合的比较好.
(2)∵2014年预计年产量为f(7)=$\frac{3}{2}×7+\frac{5}{2}$=13,∴13×(1-30%)=9.1,
即确定2014年的年产量约为9.1万件.

点评 熟练掌握建立模型的方法、不同函数模型的单调性等性质及正确计算是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0
(1)求$\overrightarrow{AB}$的坐标;
(2)求圆C1:x2-6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且-1≤f(-1)≤2,2≤f(1)≤4,求点(a,b)的集合表示的平面区域的面积;
(2)若t=2+$\frac{1}{{x}^{2}-x}$,(x<1且x≠0),求函数f(x)的最大值;
(3)若t=x-a-3(a∈R),不等式b2+c2-bc-3b-1≤f(x)≤a+4(b,c∈R)的解集为[-1,5],求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{{x^2}+8x+16}$+$\sqrt{{x^2}-10x+25}$.
(1)求不等式f(x)≥f(-4)的解集;
(2)设函数g(x)=k(x-5),k∈R,若f(x)>g(x)对任意x∈R都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是①②⑤(写出所有正确命题的编号).
①当$0<CQ<\frac{1}{2}$时,S为四边形    
②当$CQ=\frac{1}{2}$时,S为等腰梯形
③当$CQ=\frac{3}{4}$时,S与C1D1的交点R满足${C_1}{R_1}=\frac{1}{4}$
④当$\frac{3}{4}<CQ<1$时,S为六边形    
⑤当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数y=log${\;}_{\frac{1}{3}}$(4+3x-x2)的一个单调递增区间是[$\frac{3}{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数满足f(lge)•f(lg$\frac{1}{e}$)<0的是(  )
A.f(x)=2xB.f(x)=lnxC.f(x)=x3D.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对任意m∈R直线l与圆C总有两个交点A,B;
(2)若定点P(1,1)分弦AB为$|AP|=\frac{1}{2}|PB|$,求此直线l的方程.

查看答案和解析>>

同步练习册答案