精英家教网 > 高中数学 > 题目详情
20.若关于x的方程xlnx-kx+1=0在区间[$\frac{1}{e}$,e]上有两个不等实根,则实数k的取值范围是(1,1+$\frac{1}{e}$].

分析 分类参数可得k=lnx+$\frac{1}{x}$,判断f(x)=lnx+$\frac{1}{x}$在[$\frac{1}{e}$,e]上的单调性和极值,根据解得个数得出k的范围.

解答 解:由xlnx-kx+1=0得k=lnx+$\frac{1}{x}$,
令f(x)=lnx+$\frac{1}{x}$,则f′(x)=$\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$.
∴当$\frac{1}{e}<x<1$时,f′(x)<0,f(x)单调递减,
当1<x<e时,f′(x)>0,f(x)单调递增,
∴当x=1时,f(x)取得最小值f(1)=1,
又f($\frac{1}{e}$)=-1+e,f(e)=1+$\frac{1}{e}$.
∴f(e)<f($\frac{1}{e}$).
∵关于x的方程xlnx-kx+1=0在区间[$\frac{1}{e}$,e]上有两个不等实根,
∴f(x)=k有两解,
∴1<k≤1+$\frac{1}{e}$.
故答案为:(1,1+$\frac{1}{e}$].

点评 本题考查了方程根与函数单调性,极值的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x+3ex,若方程f2(x)-2|f(x)|=0的根有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆锥的底面半径为r,高是h,在这个圆锥内部有一个内接正方体,则此正方体的棱长等于(  )
A.$\frac{rh}{r+h}$B.$\frac{2rh}{r+h}$C.$\frac{2rh}{{\sqrt{2}h+2r}}$D.$\frac{2rh}{{\sqrt{2}r+h}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点M(-3,-1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:x-y-2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.根据二分法求方程lnx+x-2=0的根得到的程序框图可称为(  )
A.工序流程图B.程序流程图C.知识结构图D.组织结构图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数g(x)=x2+bx+c,且关于x的不等式g(x)<0的解集为(-$\frac{7}{9}$,0).
(1)求实数b,c的值;
(2)若不等式0≤g(x)-$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$<$\frac{2}{9}$对于任意n∈N*恒成立,求满足条件的实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式[2tx2-(t2-1)x+2]•lnx≤0对任意x∈(0,+∞)恒成立,则实数t的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线C:$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{4}$=1的、左右焦点分别为F1,F2,M(1,4),点F1,F2分别为△MAB的边MA,MB的中点,点N在第一象限内,线段MN的中点恰好在双曲线C上,则|AN|-|BN|的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足(x-4)2+(y-8)2=4,则$\frac{y}{x-4}$的取值范围是(-∞,-$\sqrt{15}$]∪[$\sqrt{15}$,+∞).

查看答案和解析>>

同步练习册答案