精英家教网 > 高中数学 > 题目详情
(
3+2
2
)x+(
3-2
2
)-x=2
2
±2.
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:
3+2
2
=
2
+1
3-2
2
=
2
-1
,可将原方程化为:(
2
+1)x
=
2
±1,解得x值.
解答: 解:∵
3+2
2
=
2
+1
3-2
2
=
2
-1

(
3-2
2
)-1
=
2
+1

故:(
3+2
2
)
x
+(
3-2
2
)
-x
=(
2
+1)x
+(
2
-1)-x
=2(
2
+1)x
=2
2
±2,
(
2
+1)x
=
2
±1,
解得:x=±1
点评:本题考查的知识点是根式方程,其中将化简二重根式
3+2
2
=
2
+1
3-2
2
=
2
-1
,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤a}≠∅,P={y|y=x+1,x∈A},Q={y|y=x2,x∈A},若P⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,∠CBF=90°,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(1)作出这个几何体的三视图(不要求写作法);
(2)设P=DF∩AG,Q是直线DC上的动点,判断并证明直线PQ与直线EF的位置关系;
(3)求三棱锥F-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,当 n≥2时,an=
Sn
+
Sn-1
2

(1)证明数列 {
Sn
}是一个等差数列; 
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:a2+a≤0;命题q:函数f(x)=lnx+
1
2
x2-ax在定义域内单调递增
(Ⅰ)若命题q为真命题,求实数a的取值范围;
(Ⅱ)若命题p为假,且“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

lg2x+3lgx-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有4个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

求log927的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C所对的边,A<B<C,A,B,C成等差数列,公差为θ,且
1
sinA
3
2
2sinB
1
sinC
也成等差数列.
(Ⅰ)求θ;
(Ⅱ)若a=
6
-
2
,求△ABC的面积.

查看答案和解析>>

同步练习册答案