精英家教网 > 高中数学 > 题目详情
如图,已知平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,∠CBF=90°,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(1)作出这个几何体的三视图(不要求写作法);
(2)设P=DF∩AG,Q是直线DC上的动点,判断并证明直线PQ与直线EF的位置关系;
(3)求三棱锥F-ADE的体积.
考点:棱柱、棱锥、棱台的体积,简单空间图形的三视图,空间中直线与直线之间的位置关系
专题:综合题,空间位置关系与距离
分析:(1)利用三视图的作法,作出这个几何体的三视图;
(2)证明EF⊥平面DCF,可得直线PQ与直线EF的位置关系;
(3)利用VF-ADE=VE-ADF,求三棱锥F-ADE的体积.
解答: 解:(1)如右图.  
(2)垂直.证明如下:
∵四边形BCEF为直角梯形,∠CBF=90°,BF∥CE,BC⊥CE,BC=BF=2,
∴EF⊥CF,
∵平面ABCD⊥平面BCEF,且四边形ABCD为矩形,
∴DC⊥平面BCEF,
∴DC⊥EF,
∵DC∩CF=C,
∴EF⊥平面DCF,
∵PQ?平面DCF,
∴EF⊥PQ;
(3)∵DC=AB=4,BC=BF=2,
∴AF=2
5

设B到平面ADGF的距离为h,则2
5
•h=4×2,
∴h=
4
5

∴E到平面ADGF的距离为
4
5

∴VF-ADE=VE-ADF=
1
3
×
1
2
×2×2
5
×
4
5
=
8
3
点评:本题考查线面垂直,考查锥体体积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,CD是京九铁路线上的一条穿山隧道,开凿前,在CD所在水平面上的山顶外取点A,B,并测得四边形ABCD中,∠ABC=
π
3
,∠BAD=
2
3
π,AB=BC=400米,AD=2米,求应开凿的隧道CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在梯形ABCD中,AB∥CD,AB=6,CD=3,E为AB的中点,F为CD上靠近点D的三等分点,且EF⊥AB,EF=2,现将梯形沿着EF翻折,使得平面BCFE⊥平面AEFD,连接BD、BA和CD,如图所示.

(1)求三棱锥E-ABD的体积;
(2)在BD上是否存在一点P,使得CP∥平面AEFD?如果存在,求DP的长;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},当B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
xlnx2,g(x)=-x2+|a|x-3

(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),f(x)≥
1
2
g(x)
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.数列{an}满足an=f(2n)(n∈N*),且a1=2,求数列的通项公式为an

查看答案和解析>>

科目:高中数学 来源: 题型:

当非空集合S⊆N*,且满足命题“如果x∈S,则8-x∈S”时,回答下列问题.
(1)试写出只有一个元素的集合S;
(2)试写出元素个数为2的S的全部;
(3)满足上述条件的集合S总共有几个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(
3+2
2
)x+(
3-2
2
)-x=2
2
±2.

查看答案和解析>>

科目:高中数学 来源: 题型:

从点A(-4,1)出发的一束光线l,经过直线I1:x-y+3=0反射,反射光线恰好通过点B(1,6),求入射光线l所在的直线方程.

查看答案和解析>>

同步练习册答案