精英家教网 > 高中数学 > 题目详情
当非空集合S⊆N*,且满足命题“如果x∈S,则8-x∈S”时,回答下列问题.
(1)试写出只有一个元素的集合S;
(2)试写出元素个数为2的S的全部;
(3)满足上述条件的集合S总共有几个.
考点:元素与集合关系的判断
专题:集合
分析:根据已知中S⊆N*,且满足命题“如果x∈S,则8-x∈S”
(1)当S只有一个元素时,x=8-x,解得S;
(2)用列举法,可得到所有元素个数为2的S;
(3)类比n元集合有2n-1个非空真子集,可得满足上述条件的集合S的个数;
解答: 解:∵S⊆N*,且满足命题“如果x∈S,则8-x∈S”
(1)当S只有一个元素时,x=8-x,
解得:x=4,
故S=4,
(2)当S只有二个元素时,集合S可以为:
{1,7},{2,6},{3,5}
(3)由于集合S中的元素1与7,2与6,3与5必须同时出现,故S中的元素至多有4组,
又∵S≠∅,
故满足条件的S共有24-1=15个
点评:本题考查的知识点是元素与集合关系的判断,正确理解条件“如果x∈S,则8-x∈S”是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=2sin(2x-
π
6
).
(1)写出它的振幅、周期、频率和初相;
(2)求这个函数的单调递增区间;
(3)若x∈[-
π
3
π
4
],求这个函数的最小值和最大值,并指出取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈N+,判断下列函数是否是正整数指数函数,若是,指出其单调性.
(1)y=(-
59
x
(2)y=x4
(3)y=
2x
5

(4)y=( 
9
7
4
x
(5)y=(π-3)x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,∠CBF=90°,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(1)作出这个几何体的三视图(不要求写作法);
(2)设P=DF∩AG,Q是直线DC上的动点,判断并证明直线PQ与直线EF的位置关系;
(3)求三棱锥F-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,∠BAD=∠ADC=90°,AB<CD,PD⊥平面ABCD,AB=AD=a,PD=
2
a.
(1)求证:平面PAB⊥平面PAD;
(2)设M为PB中点,当CD=2AB时,求证:DM⊥MC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,当 n≥2时,an=
Sn
+
Sn-1
2

(1)证明数列 {
Sn
}是一个等差数列; 
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:a2+a≤0;命题q:函数f(x)=lnx+
1
2
x2-ax在定义域内单调递增
(Ⅰ)若命题q为真命题,求实数a的取值范围;
(Ⅱ)若命题p为假,且“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有4个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得表:
日需求量14151617181920
频数10201616151310
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,
(文科)(1)求当天的利润不少于75元的概率.
(理科)(2)求当天的利润X(单位:元)的分布列与数学期望.

查看答案和解析>>

同步练习册答案