精英家教网 > 高中数学 > 题目详情
12.如图,已知矩形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(1)求证AD⊥BM.;
(2)若E是线段DB的中点,求二面角E-AM-D的余弦值.

分析 (1)推导出BM⊥AM,BM⊥面ADM,由此能证明BM⊥AD.
(2)以AM中点O为原点,OA为x轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角E-AM-D的余弦值.

解答 证明:(1)∵长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点,
∴AM=BM=2,∴BM⊥AM,
∵面ADM⊥面ABCM,
∴BM⊥面ADM,
∵AD?面ADM,∴BM⊥AD.
解:(2)以AM中点O为原点,OA为x轴,OD为z轴,建立空间直角坐标系,
则A(1,0,0),E(-$\frac{1}{2}$,1,$\frac{1}{2}$),$\overrightarrow{EA}$=($\frac{3}{2}$,-1,-$\frac{1}{2}$),$\overrightarrow{AM}$=(-2,0,0),
平面AMD的法向量$\overrightarrow{m}$=(0,1,0),
设平面EAM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EA}=\frac{3}{2}x-y-\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AM}=-2x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-2),
设二面角E-AM-D的平面角为θ,
则cosθ=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=$\frac{\sqrt{5}}{5}$.
∴二面角E-AM-D的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=3-x(-2≤x≤1)的值域是(  )
A.[3,9]B.[$\frac{1}{3}$,9]C.[$\frac{1}{3}$,3]D.[$\frac{1}{9}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为等比数列,则下列结论正确的是(  )
A.a1+a3≥2a2B.若a3>a1,则a4>a2C.若a1=a3,则a1=a2D.a12+a32≥2a22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)(x∈R)满足f(x+1)=-f(x),且当x∈(-1,1]时,f(x)=|x|,函数g(x)=$\left\{\begin{array}{l}sinπx,x>0\\-\frac{1}{x},x<0\end{array}$,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=$\frac{3}{{1+2{{cos}^2}x}}$,直线l的极坐标方程为ρ=$\frac{4}{sinθ+cosθ}$.
( I)写出曲线C1与直线l的直角坐标方程;
( II)设Q为曲线C1上一动点,求点Q到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且Sn=2n+1-2(n∈N*).
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 令bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A=﹛直线﹜,B=﹛双曲线﹜,则A∩B中元素个数为(  )
A.0B.1C.2D.0或1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求与椭圆9x2+5y2=45有共同的焦点,且经过点M(2,$\sqrt{6}$)的椭圆的标准方程是$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.实数x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{2x+y-7≤0}\end{array}}\right.$,若x-2y≥m恒成立,则实数m的取值范围是(  )
A.(-∞,-3]B.(-∞,-4]C.(-∞,6]D.[0,6]

查看答案和解析>>

同步练习册答案