精英家教网 > 高中数学 > 题目详情
9.极坐标方程ρ=2sin($\frac{π}{3}$+θ)化为直角坐标方程为(  )
A.(x-$\frac{{\sqrt{3}}}{2}$)2+(y-$\frac{1}{2}$)2=1B.y=2(x-$\frac{3}{2}$)C.(x-$\frac{{\sqrt{3}}}{2}$)(y-$\frac{1}{2}$)=1D.4x2+12y2=1

分析 利用两角和的正弦函数化简方程,然后转化为普通方程.

解答 解:ρ=2sin($\frac{π}{3}$+θ)=$\sqrt{3}$cosθ+sinθ,
即ρ2=$\sqrt{3}$ρcosθ+ρsinθ,
可得x2+y2=$\sqrt{3}x$+y.
即:(x-$\frac{{\sqrt{3}}}{2}$)2+(y-$\frac{1}{2}$)2=1.
故选:A.

点评 本题考查简单曲线的极坐标方程与普通方程的互化,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.下列说法中:
①终边落在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函数y=2cos(x-$\frac{π}{4}$)图象的一个对称中心是($\frac{3π}{4}$,0);
③函数y=tanx在其定义域内是增函数;④为了得到函数y=sin(2x-$\frac{π}{3}$)的图象,只需把函数y=sin2x的图象向右平移$\frac{π}{6}$个单位长度.
其中正确说法的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正方体ABCD-A1B1C1D1中,BD1与平面AA1D1D所成的角的正切值是$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知偶函数f(x)在[0,π]上单调递增,那么下列各式正确的是(  )
A.f(-π)>f(log2$\frac{1}{4}$)>f($-\frac{π}{2}$)B.f(log2$\frac{1}{4}$)>f(-$\frac{π}{2}$)>f(-π)
C.f(-π)>f(-$\frac{π}{2}$)>f(log2$\frac{1}{4}$)D.f(-$\frac{π}{2}$)>f(log2$\frac{1}{4}$)>f(-π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且4an+2=4an+1-an
(1)求a4的值;
(2)证明:{an+1-$\frac{1}{2}$an}为等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图(算法流程图)的输出值x为(  ) 
   
A.13B.12C.22D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l的参数方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2-t}\end{array}\right.$(t∈R),则l的斜率为(  )
A.-1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD,四边形ABCD为正方形,且P为AD的中点,Q为SB的中点.
(1)求证:PQ∥平面SCD;
(2)求证:;CD⊥SA
(3)若SA=SD,M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某公司准备投入适当的广告费对其生产的产品进行促销,在一年内,根据预算得某产品的年利润S(万元)与广告费x(万元)之间的函数解析式为S=25-($\frac{x}{4}$+$\frac{16}{x}$)(x>0),则当该公司的年利润最大时应投人广告费(  )
A.9万元B.8万元C.7万元D.6万元

查看答案和解析>>

同步练习册答案