精英家教网 > 高中数学 > 题目详情
已知x∈(0,+∞)有下列各式:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3,x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x3
≥4成立,观察上面各式,按此规律若x+
a
x4
≥5,则正数a=(  )
A、4
B、5
C、44
D、55
考点:归纳推理
专题:规律型
分析:由已知中的不等式x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3,x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x3
≥4,归纳推理得:x+
nn
xn
≥n+1,进而根据n+1=5,求出n值,进而得到a值.
解答: 解:由已知中:x∈(0,+∞)时,
x+
1
x
≥2,
x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3,
x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x3
≥4

归纳推理得:
x+
nn
xn
≥n+1,
若x+
a
x4
≥5,
则n+1=5,即n=4,
此时a=nn=44
故选:C
点评:本题考查的知识点是归纳推理,其中根据已知归纳推理得:x+
nn
xn
≥n+1,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线f(x)=x2(x-2)+1在x=1处的切线方程为(  )
A、x+2y-1=0
B、2x+y-1=0
C、x-y+1=0
D、x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(-1,1),
b
=(2,k),有以下命题:
①k=-2是
a
b
的充要条件;
②k=2是
a
b
的充要条件;
③若k=-1,则
a
b
=-3;
④若k=-1,则|
a
|=|
b
|;
⑤若k=-1,则<
a
b
>=120°.
则下列命题正确的是(  )
A、①②③B、①②④
C、①②⑤D、②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC一定是(  )
A、钝角三角形
B、直角三角形
C、锐角三角形
D、形状不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法不正确的是(  )
A、相关关系是一种非确定性关系
B、若事件A、B独立,则事件
.
A
.
B
也独立
C、回归分析是对具有函数关系的两个变量进行统计分析的一种方法
D、“整数是自然数,-3是整数,-3是自然数.”推理错误的原因是大前提错误

查看答案和解析>>

科目:高中数学 来源: 题型:

从某开发区随机抽取10个小型企业,获得第i个小型企业的月收入xi(单位:万元)与月利润yi(单位:万元)的数据资料,算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
x
 
2
i
=720.
(Ⅰ)求小型企业的月利润y对月收入x的线性回归方程y=bx+a
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该开发区某小型企业月收入为20万元,预测该小型企业的月利润.
附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
y
=
b
x+
a
y.

查看答案和解析>>

科目:高中数学 来源: 题型:

求实数m取何值时,复数z=
m2-m
+(m2-10m+9)i是:
(1)实数;       
(2)虚数;        
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn且a5+a9=-84,S3=-171.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{a2m+1}的前m项和Tm,并求Tm的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
cosx,cosx),
b
=(0,sinx),
c
=(sinx,cosx)
d
=(sinx,sinx).
(1)当x=
π
4
时,求向量
a
b
的夹角θ;
(2)当x∈[0,
π
2
]时,求
c
d
的最大值;
(3)设函数f(x)=(
a
-
b
)(
c
+
d
),将函数f(x)的图象向右平移s个长度单位,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1,令
m
=(s,t),求|
m
|的最小值.

查看答案和解析>>

同步练习册答案