精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn且a5+a9=-84,S3=-171.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{a2m+1}的前m项和Tm,并求Tm的最小值.
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:(Ⅰ)设等差数列{an}的公差为d,利用a5+a9=-84,S3=-171,建立方程组,求出首项与公差,即可求数列{an}的通项公式;
(Ⅱ)求出Tm,或令a2m+1=6m-60≤0,即可求Tm的最小值.
解答: 解:(Ⅰ)设等差数列{an}的公差为d,由已知得
a5+a9=-84
3a2=-171
,解得
a1=-60
d=3

所以an=3n-63
(Ⅱ)a2m+1=6m-60,则Tm=3m2-57m,当m=9或10时,Tm最小,Tm的最小值为-270.
或令a2m+1=6m-60≤0,解得m≤10,即当当m=9或10时,Tm最小,Tm的最小值为-270.
点评:本题考查等差数列的通项公式与求和,考查学生的计算能力,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x3-6bx+3b在(0,1)内有极小值,则(  )
A、b>0
B、b<1
C、0<b<
2
2
D、0<b<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,+∞)有下列各式:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3,x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x3
≥4成立,观察上面各式,按此规律若x+
a
x4
≥5,则正数a=(  )
A、4
B、5
C、44
D、55

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos
x
2
3
sin
x
2
+cos
x
2
)-1,x∈R.
(Ⅰ)求f(
π
3
)的值;
(Ⅱ)设α∈(0,
π
2
),β∈(
π
3
π
2
),f(α)=2,f(β)=
8
5
,求f(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AC=1,BC=3,AB=
7
,M为边BC上一点
(1)若向量
AM
=
1
3
AB
+
2
3
AC
,求BM的长
(2)若sin∠AMC=
3
3
,求AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},Sn为其前n项和,a5=6,S6=18,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•3n,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

从M(2,2)射出一条光线,经过x轴反射后过点N(-8,3),求反射点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
2
,an=4an-1+1(n≥2).
(1)求a1+a2+a3
(2)令bn=an+
1
3
,求证数列{bn}是等比数列;
(3)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(2x+
π
3
).
(1)求f(x)的最小正周期;
(2)用五点作图法作出f(x)的简图.

查看答案和解析>>

同步练习册答案