精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
0≤x≤
2
y≤2
x≤
2
y
,则z=
2x+y-1
x-1
的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,将z化简为则
y+1
x-1
=z-2
,利用斜率的几何意义即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
z=
2x+y-1
x-1
=
2(x-1)+y+1
x-1
=2+
y+1
x-1

y+1
x-1
=z-2

设k=
y+1
x-1
=z-2

则k的几何意义为区域内的点P(x,y)到定点D(1,-1)的斜率的取值范围,
x=
2
x≤
2
y
,解得
x=
2
y=1
,即A(
2
,1
),
则由图象可知当OD的斜率kOD=-1,DA的斜率kDA=
-1-1
1-
2
=
2
2
-1
=2(
2
+1)=2
2
+2

即DP的斜率的取值范围为k≥kDA或k≤kOD
即k≥2
2
+2
或k≤-1,
∵k=z-2,
∴z-2≥2
2
+2
或z-2≤-1,
即z≥2
2
+2
+2=2
2
+4
或z≤1,
即z=
2x+y-1
x-1
的取值范围是(-∞,1]∪[2
2
+4,+∞),
故答案为:(-∞,1]∪[2
2
+4,+∞).
点评:本题主要考查线性规划的应用,将分式函数转化为斜率的形式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P(x,y)为不等式组
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面区域上一点,则x+2y取值范围为(  )
A、[-
5
5
]
B、[-2,
5
]
C、[-1,2]
D、[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式:
x-y+2≥0
1≤x≤2
y≥2

(1)求
y
x
的取值范围;
(2)不等式xy≤ax2+2y2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为1,P为线段BC的中点,Q为线段CC1上的动点,过A,P,Q的平面截该正方体所得的截面记为S,则所有正确的命题是
 

①当0<CQ<
1
2
时,S为四边形;
②当CQ=
1
2
时,S为等腰梯形;
③当CQ=
3
4
时,S与C1D1的交点R满足RD1=
1
3

④当
3
4
<CQ<1时,S为五边形;
⑤当CQ=1时,S的面积为
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
x 18 13 10 -1
y 25 34 39 62
由表中数据得线性回归方程y=-2x+a,预测当气温为-4℃时,用电量的度数约为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x+2x+b(b为常数),则f(-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=4x的准线相交于A,B两点.若△AOB的面积为2,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数f(x)=Asin(ωx+φ)(其中ω>0,0≤φ≤
π
2
)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )
A、-
3
2
B、-
1
2
C、-1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题正确的个数是(  )
①存在这样的直线,既不与坐标轴平行也不经过任何整点;
②如果k与b都是无理数,则直线y=kx+b不经过任何整点;
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点;
④直线y=kx+b经过无穷多个整点,当且仅当k与b都是有理数;
⑤存在恰经过一个整点的直线.
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案