精英家教网 > 高中数学 > 题目详情
7.若集合M={x|y=ln(x-1)},N={x|y=$\sqrt{2-x}$},则M∩N=(  )
A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x>1}D.{x|1≤x≤2}

分析 求出M与N中x的范围确定出M与N,找出两集合的交集即可.

解答 解:由M中y=ln(x-1),得到x-1>0,即x>1,
∴M={x|x>1},
由N中y=$\sqrt{2-x}$,得到2-x≥0,即x≤2,
∴N={x|x≤2},
则M∩N={x|1<x≤2},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;
(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取2名学生组成一个实验组,设其中男生人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线y=2x-1和圆O2:x2+y2-4y=0的位置关系是(  )
A.相离B.相交C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+2$\overrightarrow{b}$+3$\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$,则$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C的圆心为(2,4),且圆C经过点(0,4).
(1)求圆C的标准方程;
(2)过点P(3,-1)作直线l与圆C相交于A,B两点,AB=2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{4}^{lo{g}_{2}(8-x)}-4a}{4}$.
(Ⅰ)若f(4)=6,求a的值;
(Ⅱ)当x∈[0,b](b>0)时,函数f(x)的值域是[0,3b],求a,b的值;
(Ⅲ)设函数g(x)=$\left\{\begin{array}{l}{f(x),(x<4)}\\{(3a-1)x+12a,(x≥4)}\end{array}\right.$,若g(x)在(-∞,+∞)上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知函数f(x)=$\sqrt{3}$sin2x-2cos2x(x∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)△ABC中,若AB=$\sqrt{7}$,f(C)=1,sinB=3sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某职高共有学生3000人,其中高一有1200人,高二有1100人,高三有700人,为了了解学生的体育达标成绩,现从中抽取一个容量为300的样本进行分析,则要从高一中抽取学生120人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列点到直线的距离:
(1)A(-2,3),l:3x+4y+3=0;
(2)B(1,0),l:$\sqrt{3}$x+y-$\sqrt{3}$=0;
(3)C(1,-2),l:4x+3y=0.

查看答案和解析>>

同步练习册答案