精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
2
sin(2x+
π
4

(1)求f(
π
6
)的值;
(2)求f(x)的最小正周期和单调递增区间.
(3)若sinα=
3
5
,且α∈(
π
2
,π),求f(
α
2
+
π
24
).
考点:两角和与差的正弦函数,三角函数的周期性及其求法
专题:三角函数的求值
分析:(1)直接根据函数f(x)的解析式求出f(
π
6
)的值.
(2)由函数的解析式求得周期,令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,求得x的范围,可得函数的增区间.
(3)由条件求得cosα=-
4
5
,从而根据函数的解析式求得f(
α
2
+
π
24
)的值.
解答: 解:(1)∵函数f(x)=
2
2
sin(2x+
π
4
),
f(
π
6
)=
2
2
(sin
π
3
×cos
π
4
+cos
π
3
×sin
π
4
)=
3
+1
4

(2)T=
2
,∵函数 y=sinx在[2kπ-
π
2
,2kπ+
π
2
]上递增

2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,∴kπ-
8
≤x≤kπ+
π
8

∴增区间为[kπ-
8
,kπ+
π
8
],k∈z.
(3)因为sinα=
3
5
,且α∈(
π
2
,π),所以cosα=-
4
5

f(
α
2
+
π
24
)=
2
2
sin(α+
π
12
+
π
4
)=
2
2
×(sinα•cos
π
3
+cosα•sin
π
3
)=
3
2
-4
6
20
点评:本题主要考查两角和的正弦公式,同角三角函数的基本关系,正弦函数的单调性和周期性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系内,直线l的方程为ax+by+c=0,设A(x1,y1),B(x2,y2)为不同的两点,且点B不在直线l上,实数λ满足ax1+by1+c+λ(ax2+by2+c)=0.给出下列四个命题:
①不存在λ,使点A在直线l上;
②存在λ,使曲线(x-x1)(x-x2)+(y-y1)(y-y2)=0关于直线l对称;
③若λ=-1,则过A,B两点的直线与直线l平行;
④若λ>0,则点A,B在直线l的异侧.
其中,所有真命题的序号是(  )
A、①②④B、③④
C、①②③D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足奇数项a1,a3,a5,…成等差数列{a2n-1}(n∈N+),而偶数项a2,a4,a6,…成等比数列{a2n}(n∈N+),且a1=1,a2=2,a2,a3,a4,a5成等差数列,数列{an}的前n项和为Sn
(Ⅰ)求Sn
(Ⅱ)设bn=
S2n
2n
,试比较bn+1与bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是圆O外一点,过P引圆O的两条割线PAB、PCD,PA=AB=
5
,CD=3,则PC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+x2-2ax,a∈R.
(Ⅰ)若函数f(x)在定义域内为增函数,求实数a的取值范围;
(Ⅱ)设F(x)=f(x)+
1
2
a2,若F(m)=F(n)=0(其中0<m<n),且x0=
m+n
2
,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在锐角三角形ABC中,a,b,c分别为角A,B,C的对边,a2+b2-6abcosC=0,且sin2C=2sinAsinB.(1)求角C的值;
(2)设函数f(x)=cos(ωx-
3
)-cosωx(ω>0),且f(x)两个相邻的最低点之间的距离为
π
2
,求f(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

春节期间,某商场进行促销活动,方案是:顾客每买满200元可按以下方式摸球兑奖:箱内装有标着数字20,40,60,80,100的小球各两个,顾客从箱子里任取三个小球,按三个小球中最大数字等额返还现金(单位:元),每个小球被取到的可能性相等.
(1)求每位顾客返奖不少于80元的概率;
(2)若有三位顾客各买了268元的商品,求至少有二位顾客返奖不少于80元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项等比数列{an},已知它的前n项积为Tn,若T10=9T6,则a5•a12的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=sinx,下列命题正确的有
 
.(写出所有正确命题的序号)
①函数f(x)任意两个零点之间的距离为kπ(k∈Z);
②存在x0>0,x0≤f(x0);
③曲线f(x)=sinx关于x轴对称的图形与关于y轴对称的图形重合;
④l1,l2是函数f(x)=sinx图象上的任意两条相互垂直的切线,则l1,l2斜率之和为0;
⑤设④中l1,l2交于P点,则P点坐标可以是(
π
2
π
2
).

查看答案和解析>>

同步练习册答案