精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=(-x2+ax+b)(ex-e),当x>0时f(x)≤0,则实数a的取值范围是(-∞,1].

分析 设g(x)=-x2+ax+b,h(x)=ex-e,根据条件当x>0时f(x)≤0,判断两个函数的符号关系得到g(x)必需过点(1,0)点,建立a,b的关系,根据一元二次函数根的关系进行求解即可.

解答 解:设g(x)=-x2+ax+b,h(x)=ex-e,
则h(x)在(0,+∞)上为增函数,且h(1)=0,
若当x>0时f(x)≤0,则满足当x>1时,g(x)<0,
当0<x<1时,g(x)>0,
即g(x)必需过点(1,0)点,则g(1)=-1+a+b=0,则b=1-a,
此时函数g(x)与h(x)满足如图所示:
此时g(x)=-x2+ax+1-a=-(x-1)[x-(a-1)],
则满足函数g(x)的另外一个零点a-1≤0,
即a≤1,
故答案为:(-∞,1].

点评 本题主要考查不等式恒成立问题,构造函数转化为两个函数的符号相反,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12)
(1)求$\overrightarrow{AB}$坐标及|$\overrightarrow{AB}$|
(2)求$\overrightarrow{OA}$•$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?x∈(0,$\frac{π}{2}$),x>sinx;命题q:?x∈(0,$\frac{π}{2}$),sinx+cosx=$\frac{9}{10}$,下列命题为真命题的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别为角A、B、C的对边,若$\overrightarrow{m}$=(cos2$\frac{A}{2}$,1),$\overrightarrow{n}$=(cos2(B+C),1),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(I)求角A;
(Ⅱ)当a=6,且△ABC的面积S满足$\sqrt{3}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4S}$时,求边c的值和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=cosx在区间[a,b]上是增函数,且f(a)=-1,f(b)=1,则cos$\frac{a+b}{2}$等于(  )
A.0B.$\frac{\sqrt{2}}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=|$\left\{\begin{array}{l}{|\frac{lnx}{x}|,0<x≤e}\\{-\frac{1}{2{e}^{2}}x+\frac{3}{2e},x>e}\end{array}\right.$,若a<b<c,且f(a)=f(b)=f(c),则$\frac{blna}{alnb}$•c的取值范围为(  )
A.(e,3e)B.(-3e,-e)C.(1,3e)D.(-3e,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设P(8,$\frac{π}{3}$),直线l经过P点且与极轴所成的角为$\frac{5π}{6}$,求直线1的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在半径为r的圆中,扇形的周长等于半圆的弧长,那么扇形的圆心角是多少弧度?扇形的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正项数列{an}满足a1=1,a2=2,2an2=an+12+an-12(n≥2),则a6=4.

查看答案和解析>>

同步练习册答案