精英家教网 > 高中数学 > 题目详情
1.若直线x+y+1=0与直线ax+y-1=0互相平行,则a的值等于(  )
A.1B.$\frac{1}{2}$C.-1D.2

分析 根据它们的斜率相等,可得-1=-a,解方程求a的值.

解答 解:∵直线x+y+1=0与直线ax+y-1=0互相平行,
∴它们的斜率相等,
∴-1=-a,
∴a=1
故选:A.

点评 本题考查两直线平行的性质:两直线平行,斜率相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若$\overrightarrow{AB}$=(3,x),$\overrightarrow{CD}$=(-2,6),$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,M为边BC的中点,若$\overrightarrow{CM}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则m+n=(  )
A.1B.-1C.0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$.
(1)求角A的大小;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{x+a}{{x}^{2}+1}$是奇函数.
(1)求实数a的值;
(2)证明y=f(x)在区间(1,+∞)上单调递减;
(3)解不等式f(x2-x+2)<f(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的正射影的数量为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某地一天中6时至14时的温度变化曲线近似满足函数T=Asin(ωt+φ)+b(其中$\frac{π}{2}$<φ<π),6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是20°C;图中曲线对应的函数解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-cosx,则f(-0.5),f(0),f(0.6)这三个函数值从小到大分别为f(0.6)>f(-0.5)>f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集为R,A={x|2m+1≤x≤3m-5},∁RB={x|x<13或x>22},A⊆A∩B,求m的取值范围.

查看答案和解析>>

同步练习册答案