精英家教网 > 高中数学 > 题目详情
11.已知全集为R,A={x|2m+1≤x≤3m-5},∁RB={x|x<13或x>22},A⊆A∩B,求m的取值范围.

分析 由全集R及B的补集,确定出B,根据A为两集合交集的子集,确定出m的范围即可.

解答 解:∵全集为R,∁RB={x|x<13或x>22},
∴B={x|13≤x≤22},
∵A={x|2m+1≤x≤3m-5},且A⊆A∩B,
∴当A=∅时,2m+1>3m-5,即m<6,满足题意;
当A≠∅时,2m+1≤3m-5,即m≥6,则有$\left\{\begin{array}{l}{2m+1≥13}\\{3m-5≤22}\end{array}\right.$,
解得:6≤m≤9,
综上,m的取值范围是m≤9.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若直线x+y+1=0与直线ax+y-1=0互相平行,则a的值等于(  )
A.1B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.同时投掷三颗骰子一次,设A=“三个点都不相同“,B=“至少有一个6点,则P(A|B)为(  )
A.$\frac{1}{2}$B.$\frac{60}{91}$C.$\frac{5}{18}$D.$\frac{91}{216}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,右顶点为($\sqrt{3}$,0).
(1)求G的方程;
(2)直线y=kx+1与曲线G交于不同的两点A,B,若在x轴上存在一点M,使得|AM|=|BM|,求点M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确的命题个数为(  )
①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;
②数列{an}的前n项和为Sn,则Sn=An2+Bn是数列{an}为等差数列的充要条件;
③在数列{an}中,a1=1,Sn是其前n项和,满足Sn+1=$\frac{1}{2}$Sn+2,则{an}是等比数列;
④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$=$\frac{{c}_{1}}{{c}_{2}}$是P=Q的充分必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x→x0时,f(x)→∞,g(x)→A(A是常数),试证明:$\underset{lim}{x→{x}_{0}}$$\frac{g(x)}{f(x)}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆M:x2+y2-2x=0及点A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是三角形ABC的内切圆,求三角形ABC的面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.己知集合A=[0,1),B=[1,+∞),函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-{x}^{2},x∈A}\\{2{x}^{2}-x+a,x∈B}\end{array}\right.$,若对任意x0∈A,都有f(f(x0))∈B,则实数a的取值范围是(  )
A.[-1,2)B.[-1,+∞)C.[0,+∞)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则$\frac{f′(-2)}{f′(1)}$=(  )
A.5B.-5C.2D.-2

查看答案和解析>>

同步练习册答案